Suppr超能文献

在法国国家行政卫生数据库中识别多囊卵巢综合征的模型的开发与验证

Development and validation of a model to identify polycystic ovary syndrome in the French national administrative health database.

作者信息

Micolon Eugénie, Loubiere Sandrine, Zimmermann Appoline, Berbis Julie, Auquier Pascal, Courbiere Blandine

机构信息

Department of Gynecology-Obstetric and Reproductive Medicine, AP-HM, La Conception University teaching Hospital, 147 Boulevard Baille, Marseille, 13005, France.

Department of Clinical Research and Innovation, Support Unit for Clinical Research and Economic Evaluation, Assistance Publique - Hôpitaux de Marseille, Marseille, France.

出版信息

BMC Med Res Methodol. 2025 Jan 10;25(1):5. doi: 10.1186/s12874-024-02447-4.

Abstract

BACKGROUND

We aimed to develop and validate an algorithm for identifying women with polycystic ovary syndrome (PCOS) in the French national health data system.

METHODS

Using data from the French national health data system, we applied the International Classification of Diseases (ICD-10) related diagnoses E28.2 for PCOS among women aged 18 to 43 years in 2021. Then, we developed an algorithm to identify PCOS using combinations of clinical criteria related to specific drugs claims, biological exams, international classification of Diseases (ICD-10) related diagnoses during hospitalization, and/or registration for long-term conditions. The sensitivity, specificity and positive predictive value (PPV) of different combinations of algorithm criteria were estimated by reviewing the medical records of the Department of Reproductive Medicine at a university hospital for the year 2022, comparing potential women identified as experiencing PCOS by the algorithms with a list of clinically registered women with or without PCOS.

RESULTS

We identified 2,807 (0.01%) women aged 18 to 43 who received PCOS-related care in 2021 using the ICD-10 code for PCOS in the French National health database. By applying the PCOS algorithm to 349 women, the positive and negative predictive values were 0.90 (95%CI (83-95) and 0.93 (95%CI 0.90-0.96) respectively. The sensitivity of the PCOS algorithm was estimated at 0.85 (95%CI 0.77-0.91) and the specificity at 0.96 (95%CI 0.92-0.98).

CONCLUSION

The validity of the PCOS diagnostic algorithm in women undergoing reproductive health care was acceptable. Our findings may be useful for future studies on PCOS using administrative data on a national scale, or even on an international scale given the similarity of coding in this field.

摘要

背景

我们旨在开发并验证一种算法,用于在法国国家卫生数据系统中识别患有多囊卵巢综合征(PCOS)的女性。

方法

利用法国国家卫生数据系统的数据,我们在2021年对18至43岁女性应用了国际疾病分类(ICD-10)中与PCOS相关的诊断代码E28.2。然后,我们开发了一种算法,通过与特定药物申请、生物学检查、住院期间国际疾病分类(ICD-10)相关诊断和/或长期疾病登记相关的临床标准组合来识别PCOS。通过查阅2022年一家大学医院生殖医学科的病历,将算法识别为可能患有PCOS的女性与临床登记的患有或未患有PCOS的女性名单进行比较,估计了算法标准不同组合的敏感性、特异性和阳性预测值(PPV)。

结果

我们在法国国家卫生数据库中使用PCOS的ICD-10代码,识别出2021年接受PCOS相关治疗的18至43岁女性2807名(0.01%)。将PCOS算法应用于349名女性,阳性和阴性预测值分别为0.90(95%CI(83-95))和0.93(95%CI 0.90-0.96)。PCOS算法的敏感性估计为0.85(95%CI 0.77-0.91),特异性为0.96(95%CI 0.92-0.98)。

结论

PCOS诊断算法在接受生殖健康护理的女性中的有效性是可以接受的。我们的研究结果可能有助于未来利用全国甚至国际范围内的行政数据进行PCOS研究,鉴于该领域编码的相似性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/143e/11721591/e156327b9248/12874_2024_2447_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验