Suppr超能文献

通过仿生工程木材可扩展制备光响应超疏水复合相变材料用于太阳能-热能管理

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

作者信息

Meng Yang, Zhang Jiangyu, Li Yuchan, Jiang Hui, Xie Delong

机构信息

Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

出版信息

Molecules. 2025 Jan 4;30(1):168. doi: 10.3390/molecules30010168.

Abstract

The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry. The scaffold undergoes selective delignification, followed by a simple, room-temperature polydopamine (PDA) modification to deposit Ag nanoparticles (Ag NPs) and graft octadecyl chains, resulting in a superhydrophobic hierarchical structure. This superhydrophobicity plays a critical role in preventing PCM leakage and enhancing environmental adaptability, ensuring long-term stability under diverse conditions. Encapsulating stearic acid (SA) as the PCM, the CPCM exhibits exceptional stability, achieving a high latent heat of 175.5 J g and an energy storage efficiency of 87.7%. In addition, the thermal conductivity of the CPCM is significantly enhanced along the longitudinal direction, a 2.1-fold increase compared to pure SA, due to the integration of Ag NPs and the unidirectional wood architecture. This synergy also drives efficient photothermal conversion via π-π stacking interactions of PDA and the surface plasmon effects of Ag NPs, enabling rapid solar-to-thermal energy conversion. Moreover, the CPCM demonstrates remarkable water resistance, self-cleaning ability, and long-term thermal reliability, retaining its functionality through 100 heating-cooling cycles. This multifunctional balsa-based CPCM represents a breakthrough in integrating phase-change behavior with advanced environmental adaptability, offering promising applications in solar-thermal energy systems.

摘要

对可持续储能解决方案日益增长的需求凸显了相变材料(PCM)在热能管理中的重要性。然而,传统的相变材料总是受到诸如泄漏、导热性差和缺乏太阳能转换能力等问题的固有限制。在此,使用通过仿生儿茶酚表面化学工程化的轻木衍生形态遗传支架开发了一种多功能复合相变材料(CPCM)。该支架经过选择性脱木质素处理,然后进行简单的室温聚多巴胺(PDA)改性,以沉积银纳米颗粒(Ag NPs)并接枝十八烷基链,从而形成超疏水分级结构。这种超疏水性在防止相变材料泄漏和增强环境适应性方面起着关键作用,确保在各种条件下的长期稳定性。将硬脂酸(SA)作为相变材料封装在其中,该复合相变材料表现出卓越的稳定性,实现了175.5 J g的高潜热和87.7%的储能效率。此外,由于银纳米颗粒的整合和单向木材结构,复合相变材料的热导率沿纵向方向显著提高,与纯硬脂酸相比提高了2.1倍。这种协同作用还通过聚多巴胺的π-π堆积相互作用和银纳米颗粒的表面等离子体效应驱动高效的光热转换,实现快速的太阳能到热能转换。此外,该复合相变材料表现出显著的耐水性、自清洁能力和长期热可靠性,在100次加热-冷却循环后仍保持其功能。这种基于轻木的多功能复合相变材料代表了将相变行为与先进的环境适应性相结合的一项突破,在太阳能-热能系统中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35f3/11721100/13d4ba0f7601/molecules-30-00168-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验