Yu Ming-Yuan, Wu Jing, Yin Guang, Jiao Fan-Zhen, Yu Zhong-Zhen, Qu Jin
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
Nanomicro Lett. 2024 Oct 23;17(1):48. doi: 10.1007/s40820-024-01544-9.
Although solar steam generation strategy is efficient in desalinating seawater, it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Herein, dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co(OH)CO nanorod top layer and a bacterial cellulose/Co(OH)CO nanorod (BCH) bottom layer. Crucially, the hydrogen bonding networks inside the membrane can be tuned by the rich surface -OH groups of the bacterial cellulose and Co(OH)CO as well as the ions and radicals in situ generated during the catalysis process. Moreover, both SO and HSO can regulate the solvation structure of Na and be adsorbed more preferentially on the evaporation surface than Cl, thus hindering the de-solvation of the solvated Na and subsequent nucleation/growth of NaCl. Furthermore, the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency. This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.
尽管太阳能蒸汽产生策略在海水淡化方面效率很高,但要实现海水的连续太阳能热淡化和有机污染物的催化降解仍然具有挑战性。在此,通过设计一种不对称双层膜来实现氢键网络和溶剂化结构的动态调控,该膜由细菌纤维素/碳纳米管/碱式碳酸钴纳米棒顶层和细菌纤维素/碱式碳酸钴纳米棒(BCH)底层组成。至关重要的是,膜内的氢键网络可通过细菌纤维素和碱式碳酸钴丰富的表面-OH基团以及催化过程中原位产生的离子和自由基进行调节。此外,SO和HSO都可以调节Na的溶剂化结构,并且比Cl更优先地吸附在蒸发表面,从而阻碍溶剂化Na的去溶剂化以及随后NaCl的成核/生长。此外,太阳能热转换产生的热量可以加速反应动力学并提高催化降解效率。这项工作提供了一种流化床水净化系统,该系统具有不对称的太阳能热催化膜,用于协同进行海水/盐水的太阳能热淡化和有机污染物的催化降解。