Suppr超能文献

从废物到价值:将塑料升级转化为高价值碳基纳米材料

From Waste to Worth: Upcycling Plastic into High-Value Carbon-Based Nanomaterials.

作者信息

M Abdelfatah Ahmed, Hosny Mohamed, S Elbay Ahmed, El-Maghrabi Nourhan, Fawzy Manal

机构信息

Green Technology Group, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.

National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo 11694, Egypt.

出版信息

Polymers (Basel). 2024 Dec 30;17(1):63. doi: 10.3390/polym17010063.

Abstract

Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060. This study explores innovative approaches to convert PW into high-value carbon nanomaterials (CNMs) such as graphene, carbon nanotubes (CNTs), and other advanced carbon structures. Various methods including pyrolysis, arc discharge, catalytic degradation, and laser ablation have been investigated in transforming PW into CNMs. However, four primary methodologies are discussed herein: thermal decomposition, chemical vapor deposition (CVD), flash joule heating (FJH), and stepwise conversion. The scalability of the pathways discussed for industrial applications varies significantly. Thermal decomposition, particularly pyrolysis, is highly scalable due to its straightforward setup and cost-effective operation, making it suitable for large-scale waste processing plants. It also produces fuel byproducts that can be used as an alternative energy source, promoting the concept of energy recovery and circular economy. CVD, while producing high-quality carbon materials, is less scalable due to the high cost and required complex equipment, catalyst, high temperature, and pressure, which limits its use to specialized applications. FJH offers rapid synthesis of high-quality graphene using an economically viable technique that can also generate valuable products such as green hydrogen, carbon oligomers, and light hydrocarbons. However, it still requires optimization for industrial throughput. Stepwise conversion, involving multiple stages, can be challenging to scale due to higher operational complexity and cost, but it offers precise control over material properties for niche applications. This research demonstrates the growing potential of upcycling PW into valuable materials that align with global sustainability goals including industry, innovation, and infrastructure (Goal 9), sustainable cities and communities (Goal 11), and responsible consumption and production (Goal 12). The findings underscore the need for enhanced recycling infrastructure and policy frameworks to support the shift toward a circular economy and mitigate the global plastic crisis.

摘要

塑料垃圾(PW)因其持续积累以及对生态系统的有害影响而带来了重大的环境挑战。根据联合国环境规划署(UNEP)的数据,2024年全球塑料产量估计将达到约5亿吨。如果没有有效的干预措施,预计这些塑料中的大部分将成为垃圾,到2060年可能会导致数十亿吨的塑料垃圾积累。本研究探索了将塑料垃圾转化为高价值碳纳米材料(CNMs)的创新方法,如石墨烯、碳纳米管(CNTs)和其他先进的碳结构。在将塑料垃圾转化为碳纳米材料的过程中,已经研究了各种方法,包括热解、电弧放电、催化降解和激光烧蚀。然而,本文讨论了四种主要方法:热分解、化学气相沉积(CVD)、快速焦耳加热(FJH)和逐步转化。所讨论的用于工业应用的途径的可扩展性差异很大。热分解,特别是热解,由于其设置简单且操作成本效益高,具有高度的可扩展性,适用于大规模垃圾处理厂。它还产生可以用作替代能源的燃料副产品,促进了能量回收和循环经济的概念。CVD虽然能生产高质量的碳材料,但由于成本高且需要复杂的设备、催化剂、高温和高压,可扩展性较差,这限制了其仅用于特殊应用。FJH使用一种经济可行的技术提供了高质量石墨烯的快速合成,该技术还可以产生有价值的产品,如绿色氢气、碳低聚物和轻质烃。然而,它仍需要针对工业产量进行优化。涉及多个阶段的逐步转化由于操作复杂性和成本较高,在扩大规模方面可能具有挑战性,但它为特定应用提供了对材料特性的精确控制。这项研究表明,将塑料垃圾升级转化为符合全球可持续发展目标的有价值材料的潜力越来越大,这些目标包括工业、创新和基础设施(目标9)、可持续城市和社区(目标11)以及负责任的消费和生产(目标12)。研究结果强调了加强回收基础设施和政策框架的必要性,以支持向循环经济的转变并缓解全球塑料危机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40f0/11723411/051d214cb867/polymers-17-00063-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验