Suppr超能文献

点击化学作为一种将空间位阻分子体系偶联以获得用于纳米医学的先进材料的有效工具。

Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine.

作者信息

Cabrera-Quiñones Neyra Citlali, López-Méndez Luis José, Cruz-Hernández Carlos, Guadarrama Patricia

机构信息

Materials Research Institute, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

Biological Systems Deparment, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Villa Quietud, Mexico City 04960, Mexico.

出版信息

Int J Mol Sci. 2024 Dec 24;26(1):36. doi: 10.3390/ijms26010036.

Abstract

Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms-can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA) and thiol-ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities-all essential in the field of nanomedicine.

摘要

自其概念形成以来,与传统方法相比,各种形式的点击化学已被证明是一种在温和条件下、以正交方式且高产率形成新共价键的卓越合成方案。如果可以确立像反应弹性这样的术语,点击反应将是很好的例子,因为它们在越来越具有挑战性的条件下表现得更好。特别是,一些高度受阻的偶联反应,在传统化学方案中效果不佳,例如用于将生物大分子(如蛋白质和适配体)或多种药物缀合到大分子平台上的反应,使用点击化学原理更容易实现,同时还能提高产物的立体选择性。在这篇综述中,考虑了纳米医学领域中相关的三种分子平台:聚合物/共聚物、环糊精和富勒烯,由于空间位阻,它们的功能化具有挑战性,这种空间位阻要么源于内在的体积行为(如在聚合物中),要么源于受限反应位点的接近性,如在环糊精和富勒烯中所见。它们主要通过铜催化的叠氮化物 - 炔烃环加成反应(CuAAC)、应变促进的叠氮化物 - 炔烃环加成反应(SPAAC)、逆电子需求狄尔斯 - 阿尔德反应(IEDDA)和硫醇 - 烯点击反应与生物活性基团(药物或生物分子)进行功能化,已导致开发出越来越复杂的系统,这些系统具有增强的特异性、多功能性、生物利用度、延迟清除、多靶向、选择性细胞毒性和追踪能力——所有这些在纳米医学领域都是必不可少的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d1b/11719597/4be7f459d7bc/ijms-26-00036-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验