Suppr超能文献

基于计算机视觉的火冰离子算法用于酸枣仁及其伪品的快速无损鉴别

Computer Vision-Based Fire-Ice Ion Algorithm for Rapid and Nondestructive Authentication of Ziziphi Spinosae Semen and Its Counterfeits.

作者信息

Chen Peng, Shao Xutong, Wen Guangyu, Song Yaowu, Fu Rao, Xiao Xiaoyan, Lu Tulin, Zhou Peina, Guo Qiaosheng, Shi Hongzhuan, Fei Chenghao

机构信息

Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China.

College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.

出版信息

Foods. 2024 Dec 24;14(1):5. doi: 10.3390/foods14010005.

Abstract

The authentication of Ziziphi Spinosae Semen (ZSS), Ziziphi Mauritianae Semen (ZMS), and Hovenia Acerba Semen (HAS) has become challenging. The chromatic and textural properties of ZSS, ZMS, and HAS are analyzed in this study. Color features were extracted via RGB, CIELAB, and HSI spaces, whereas texture information was analyzed via the gray-level co-occurrence matrix (GLCM) and Law's texture feature analysis. The results revealed significant differences in color and texture among the samples. The fire-ice ion dimensionality reduction algorithm effectively fuses these features, enhancing their differentiation ability. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) confirmed the algorithm's effectiveness, with variable importance in projection analysis (VIP analysis) (VIP > 1, < 0.05) highlighting significant differences, particularly for the fire value, which is a key factor. To further validate the reliability of the algorithm, Back Propagation Neural Network (BP), Support Vector Machine (SVM), Deep Belief Network (DBN), and Random Forest (RF) were used for reverse validation, and the accuracy of the training set and test set reached 98.83-100% and 95.89-99.32%, respectively. The method provides a simple, low-cost, and high-precision tool for the fast and nondestructive detection of food authenticity.

摘要

酸枣仁、滇刺枣种子和枳椇子的鉴别已变得具有挑战性。本研究分析了酸枣仁、滇刺枣种子和枳椇子的颜色和质地特性。通过RGB、CIELAB和HSI空间提取颜色特征,而通过灰度共生矩阵(GLCM)和劳氏纹理特征分析来分析纹理信息。结果显示样品之间在颜色和质地上存在显著差异。火冰离子降维算法有效地融合了这些特征,增强了它们的区分能力。主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)证实了该算法的有效性,投影分析中的变量重要性(VIP分析)(VIP>1,<0.05)突出了显著差异,特别是对于作为关键因素的火值。为了进一步验证该算法的可靠性,使用反向传播神经网络(BP)、支持向量机(SVM)、深度信念网络(DBN)和随机森林(RF)进行反向验证,训练集和测试集的准确率分别达到98.83-100%和95.89-99.32%。该方法为食品真伪的快速无损检测提供了一种简单、低成本且高精度的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcdf/11719666/b72fe71f83d6/foods-14-00005-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验