Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China.
College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Food Chem. 2024 Dec 1;460(Pt 1):140350. doi: 10.1016/j.foodchem.2024.140350. Epub 2024 Jul 5.
This study collected multidimensional feature data such as spectra, texture, and component contents of Polygonati Rhizoma from different origins and varieties (Polygonatum kingianum Coll. et Hemsl from Yunnan and Guizhou; Polygonatum cyrtonema Hua from Anhui and Jiangxi; Polygonatum sibiricum Red from Hunan). Multivariate statistical analysis was used to select 39 characteristic factors for distinguishing PR origins and 14 characteristic factors for discriminating PR varieties (VIP > 1 and P < 0.05). In addition, by combining multivariate statistical analysis with a deep belief network (DBN) classification algorithm, a novel artificial intelligence algorithm was developed and optimized. Compared to traditional discriminant analysis methods, the accuracy of this new approach was significantly improved, achieving a 100% discrimination rate for PR varieties and a 100% accuracy rate for tracing the origin of PR. This research provides a reference and data support for constructing intelligent algorithms based on multidimensional data fusion, to achieve food variety discrimination and origin tracing.
本研究采集了不同产地和品种(云南、贵州的川麦冬;安徽、江西的玉竹;湖南的黄精)的玉竹多维特征数据(光谱、纹理和成分含量)。采用多元统计分析方法,筛选出 39 个区分玉竹产地的特征因子和 14 个区分玉竹品种的特征因子(VIP>1,P<0.05)。此外,通过多元统计分析与深度置信网络(DBN)分类算法相结合,开发并优化了一种新的人工智能算法。与传统判别分析方法相比,该新方法的准确性显著提高,对玉竹品种的判别准确率达到 100%,对玉竹产地的溯源准确率达到 100%。本研究为构建基于多维数据融合的智能算法,实现食品品种鉴别和产地溯源提供了参考和数据支持。