Suppr超能文献

脑肿瘤分类:一种整合灰度共生矩阵(GLCM)、局部二值模式(LBP)和复合特征的新方法。

Brain tumor classification: a novel approach integrating GLCM, LBP and composite features.

作者信息

Dheepak G, J Anita Christaline, Vaishali D

机构信息

Department of Electronics & Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, Chennai, TN, India.

出版信息

Front Oncol. 2024 Jan 30;13:1248452. doi: 10.3389/fonc.2023.1248452. eCollection 2023.

Abstract

Identifying and classifying tumors are critical in-patient care and treatment planning within the medical domain. Nevertheless, the conventional approach of manually examining tumor images is characterized by its lengthy duration and subjective nature. In response to this challenge, a novel method is proposed that integrates the capabilities of Gray-Level Co-Occurrence Matrix (GLCM) features and Local Binary Pattern (LBP) features to conduct a quantitative analysis of tumor images (Glioma, Meningioma, Pituitary Tumor). The key contribution of this study pertains to the development of interaction features, which are obtained through the outer product of the GLCM and LBP feature vectors. The utilization of this approach greatly enhances the discriminative capability of the extracted features. Furthermore, the methodology incorporates aggregated, statistical, and non-linear features in addition to the interaction features. The GLCM feature vectors are utilized to compute these values, encompassing a range of statistical characteristics and effectively modifying the feature space. The effectiveness of this methodology has been demonstrated on image datasets that include tumors. Integrating GLCM (Gray-Level Co-occurrence Matrix) and LBP (Local Binary Patterns) features offers a comprehensive representation of texture characteristics, enhancing tumor detection and classification precision. The introduced interaction features, a distinctive element of this methodology, provide enhanced discriminative capability, resulting in improved performance. Incorporating aggregated, statistical, and non-linear features enables a more precise representation of crucial tumor image characteristics. When utilized with a linear support vector machine classifier, the approach showcases a better accuracy rate of 99.84%, highlighting its efficacy and promising prospects. The proposed improvement in feature extraction techniques for brain tumor classification has the potential to enhance the precision of medical image processing significantly. The methodology exhibits substantial potential in facilitating clinicians to provide more accurate diagnoses and treatments for brain tumors in forthcoming times.

摘要

在医学领域中,识别和分类肿瘤对于患者护理和治疗规划至关重要。然而,传统的手动检查肿瘤图像的方法存在耗时且主观的特点。针对这一挑战,提出了一种新颖的方法,该方法整合了灰度共生矩阵(GLCM)特征和局部二值模式(LBP)特征的能力,以对肿瘤图像(胶质瘤、脑膜瘤、垂体瘤)进行定量分析。本研究的关键贡献在于开发了交互特征,这些特征通过GLCM和LBP特征向量的外积获得。这种方法的使用大大提高了提取特征的判别能力。此外,该方法除了交互特征外,还纳入了聚合特征、统计特征和非线性特征。利用GLCM特征向量来计算这些值,包括一系列统计特征,并有效地修改特征空间。该方法在包含肿瘤的图像数据集上已得到验证。整合GLCM(灰度共生矩阵)和LBP(局部二值模式)特征可全面表示纹理特征,提高肿瘤检测和分类的精度。引入的交互特征是该方法的一个独特元素,提供了增强的判别能力,从而提高了性能。纳入聚合特征、统计特征和非线性特征能够更精确地表示关键的肿瘤图像特征。当与线性支持向量机分类器一起使用时,该方法展示了99.84%的更高准确率,突出了其有效性和广阔前景。所提出的用于脑肿瘤分类的特征提取技术改进有可能显著提高医学图像处理的精度。该方法在帮助临床医生在未来为脑肿瘤提供更准确的诊断和治疗方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2b/10861642/7dad1da07000/fonc-13-1248452-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验