Janzen Ian, Ho Cheryl, Melosky Barbara, Ye Qian, Li Jessica, Wang Gang, Lam Stephen, MacAulay Calum, Yuan Ren
Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC V5Z Il3, Canada.
Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T IZ4, Canada.
Cancers (Basel). 2024 Dec 28;17(1):58. doi: 10.3390/cancers17010058.
BACKGROUND/OBJECTIVES: Pembrolizumab monotherapy is approved in Canada for first-line treatment of advanced NSCLC with PD-L1 ≥ 50% and no EGFR/ALK aberrations. However, approximately 55% of these patients do not respond to pembrolizumab, underscoring the need for the early intervention of non-responders to optimize treatment strategies. Distinguishing the 55% sub-cohort prior to treatment is a real-world dilemma. METHODS: In this retrospective study, we analyzed two patient cohorts treated with pembrolizumab monotherapy (training set: = 97; test set: = 17). The treatment response was assessed using baseline and follow-up CT scans via RECIST 1.1 criteria. RESULTS: A logistic regression model, incorporating pre-treatment CT radiomic features of lung tumors and clinical variables, achieved high predictive accuracy (AUC: 0.85 in training; 0.81 in testing, 95% CI: 0.63-0.99). Notably, radiomic features from the peritumoral region were found to be independent predictors, complementing the standard CT evaluations and other clinical characteristics. CONCLUSIONS: This pragmatic model offers a valuable tool to guide first-line treatment decisions in NSCLC patients with high PD-L1 expression and has the potential to advance personalized oncology and improve timely disease management.
背景/目的:帕博利珠单抗单药疗法在加拿大被批准用于一线治疗PD-L1≥50%且无EGFR/ALK异常的晚期非小细胞肺癌(NSCLC)。然而,这些患者中约55%对帕博利珠单抗无反应,这凸显了对无反应者进行早期干预以优化治疗策略的必要性。在治疗前区分出这55%的亚组是一个现实世界中的难题。 方法:在这项回顾性研究中,我们分析了两个接受帕博利珠单抗单药治疗的患者队列(训练集:n = 97;测试集:n = 17)。通过实体瘤疗效评价标准(RECIST)1.1版,利用基线和随访CT扫描评估治疗反应。 结果:一个纳入肺肿瘤治疗前CT影像组学特征和临床变量的逻辑回归模型具有较高的预测准确性(训练集中的曲线下面积[AUC]:0.85;测试集中:0.81,95%置信区间:0.63 - 0.99)。值得注意的是,瘤周区域的影像组学特征被发现是独立预测因素,补充了标准CT评估和其他临床特征。 结论:这个实用模型为指导高PD-L1表达的NSCLC患者的一线治疗决策提供了一个有价值的工具,并且有潜力推动个性化肿瘤学发展并改善疾病的及时管理。