文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习与计算机断层扫描影像组学预测晚期非小细胞肺癌一线帕博利珠单抗单药治疗疾病进展的初步研究

Machine Learning and Computed Tomography Radiomics to Predict Disease Progression to Upfront Pembrolizumab Monotherapy in Advanced Non-Small-Cell Lung Cancer: A Pilot Study.

作者信息

Janzen Ian, Ho Cheryl, Melosky Barbara, Ye Qian, Li Jessica, Wang Gang, Lam Stephen, MacAulay Calum, Yuan Ren

机构信息

Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC V5Z Il3, Canada.

Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, 2329 West Mall, Vancouver, BC V6T IZ4, Canada.

出版信息

Cancers (Basel). 2024 Dec 28;17(1):58. doi: 10.3390/cancers17010058.


DOI:10.3390/cancers17010058
PMID:39796687
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11719007/
Abstract

BACKGROUND/OBJECTIVES: Pembrolizumab monotherapy is approved in Canada for first-line treatment of advanced NSCLC with PD-L1 ≥ 50% and no EGFR/ALK aberrations. However, approximately 55% of these patients do not respond to pembrolizumab, underscoring the need for the early intervention of non-responders to optimize treatment strategies. Distinguishing the 55% sub-cohort prior to treatment is a real-world dilemma. METHODS: In this retrospective study, we analyzed two patient cohorts treated with pembrolizumab monotherapy (training set: = 97; test set: = 17). The treatment response was assessed using baseline and follow-up CT scans via RECIST 1.1 criteria. RESULTS: A logistic regression model, incorporating pre-treatment CT radiomic features of lung tumors and clinical variables, achieved high predictive accuracy (AUC: 0.85 in training; 0.81 in testing, 95% CI: 0.63-0.99). Notably, radiomic features from the peritumoral region were found to be independent predictors, complementing the standard CT evaluations and other clinical characteristics. CONCLUSIONS: This pragmatic model offers a valuable tool to guide first-line treatment decisions in NSCLC patients with high PD-L1 expression and has the potential to advance personalized oncology and improve timely disease management.

摘要

背景/目的:帕博利珠单抗单药疗法在加拿大被批准用于一线治疗PD-L1≥50%且无EGFR/ALK异常的晚期非小细胞肺癌(NSCLC)。然而,这些患者中约55%对帕博利珠单抗无反应,这凸显了对无反应者进行早期干预以优化治疗策略的必要性。在治疗前区分出这55%的亚组是一个现实世界中的难题。 方法:在这项回顾性研究中,我们分析了两个接受帕博利珠单抗单药治疗的患者队列(训练集:n = 97;测试集:n = 17)。通过实体瘤疗效评价标准(RECIST)1.1版,利用基线和随访CT扫描评估治疗反应。 结果:一个纳入肺肿瘤治疗前CT影像组学特征和临床变量的逻辑回归模型具有较高的预测准确性(训练集中的曲线下面积[AUC]:0.85;测试集中:0.81,95%置信区间:0.63 - 0.99)。值得注意的是,瘤周区域的影像组学特征被发现是独立预测因素,补充了标准CT评估和其他临床特征。 结论:这个实用模型为指导高PD-L1表达的NSCLC患者的一线治疗决策提供了一个有价值的工具,并且有潜力推动个性化肿瘤学发展并改善疾病的及时管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/84bb51341a25/cancers-17-00058-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/4c4a40a22274/cancers-17-00058-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/c08a950c74d6/cancers-17-00058-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/adae9d358fdc/cancers-17-00058-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/84bb51341a25/cancers-17-00058-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/4c4a40a22274/cancers-17-00058-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/c08a950c74d6/cancers-17-00058-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/adae9d358fdc/cancers-17-00058-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9762/11719007/84bb51341a25/cancers-17-00058-g004.jpg

相似文献

[1]
Machine Learning and Computed Tomography Radiomics to Predict Disease Progression to Upfront Pembrolizumab Monotherapy in Advanced Non-Small-Cell Lung Cancer: A Pilot Study.

Cancers (Basel). 2024-12-28

[2]
Prediction of Disease Progression to Upfront Pembrolizumab Monotherapy in Advanced Non-Small-Cell Lung Cancer with High PD-L1 Expression Using Baseline CT Disease Quantification and Smoking Pack Years.

Curr Oncol. 2023-6-8

[3]
A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.

Lancet Oncol. 2018-8-14

[4]
Integration of intratumoral and peritumoral CT radiomic features with machine learning algorithms for predicting induction therapy response in locally advanced non-small cell lung cancer.

BMC Cancer. 2025-3-13

[5]
Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study.

Lancet Oncol. 2018-3-12

[6]
Radiomics of Tumor Heterogeneity in F-FDG-PET-CT for Predicting Response to Immune Checkpoint Inhibition in Therapy-Naïve Patients with Advanced Non-Small-Cell Lung Cancer.

Cancers (Basel). 2023-4-14

[7]
Long-Term Real-World Outcomes of First-Line Pembrolizumab Monotherapy for Metastatic Non-Small Cell Lung Cancer With ≥50% Expression of Programmed Cell Death-Ligand 1.

Front Oncol. 2022-3-25

[8]
Radiomics combined with transcriptomics to predict response to immunotherapy from patients treated with PD-1/PD-L1 inhibitors for advanced NSCLC.

Front Radiol. 2023-5-3

[9]
Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB-IV NSCLC (LCDigital-IO Study): a multicenter retrospective study.

J Immunother Cancer. 2023-10

[10]
A novel sub-regional radiomics model to predict immunotherapy response in non-small cell lung carcinoma.

J Transl Med. 2024-1-22

引用本文的文献

[1]
Clinically Explainable Prediction of Immunotherapy Response Integrating Radiomics and Clinico-Pathological Information in Non-Small Cell Lung Cancer.

Cancers (Basel). 2025-8-18

[2]
Development and validation of machine learning models based on molecular features for estimating the probability of multiple primary lung carcinoma versus intrapulmonary metastasis in patients presenting multiple non-small cell lung cancers.

Transl Lung Cancer Res. 2025-4-30

本文引用的文献

[1]
Personalized prediction of immunotherapy response in lung cancer patients using advanced radiomics and deep learning.

Cancer Imaging. 2024-9-30

[2]
Applications of CT-based radiomics for the prediction of immune checkpoint markers and immunotherapeutic outcomes in non-small cell lung cancer.

Front Immunol. 2024

[3]
Projected estimates of cancer in Canada in 2024.

CMAJ. 2024-5-12

[4]
Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy.

Front Oncol. 2024-3-20

[5]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[6]
Noninvasive radiomic biomarkers for predicting pseudoprogression and hyperprogression in patients with non-small cell lung cancer treated with immune checkpoint inhibition.

Oncoimmunology. 2024

[7]
Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB-IV NSCLC (LCDigital-IO Study): a multicenter retrospective study.

J Immunother Cancer. 2023-10

[8]
Targeted therapies in non-small cell lung cancer: present and future.

Fac Rev. 2023-9-4

[9]
Radiomics approaches to predict PD-L1 and PFS in advanced non-small cell lung patients treated with immunotherapy: a multi-institutional study.

Sci Rep. 2023-7-8

[10]
Prediction of Disease Progression to Upfront Pembrolizumab Monotherapy in Advanced Non-Small-Cell Lung Cancer with High PD-L1 Expression Using Baseline CT Disease Quantification and Smoking Pack Years.

Curr Oncol. 2023-6-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索