文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于瘤内和瘤周特征的放射组学模型用于预测接受新辅助免疫化疗的非小细胞肺癌的主要病理反应

Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy.

作者信息

Huang Dingpin, Lin Chen, Jiang Yangyang, Xin Enhui, Xu Fangyi, Gan Yi, Xu Rui, Wang Fang, Zhang Haiping, Lou Kaihua, Shi Lei, Hu Hongjie

机构信息

Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

出版信息

Front Oncol. 2024 Mar 20;14:1348678. doi: 10.3389/fonc.2024.1348678. eCollection 2024.


DOI:10.3389/fonc.2024.1348678
PMID:38585004
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10996281/
Abstract

OBJECTIVE: To establish a radiomics model based on intratumoral and peritumoral features extracted from pre-treatment CT to predict the major pathological response (MPR) in patients with non-small cell lung cancer (NSCLC) receiving neoadjuvant immunochemotherapy. METHODS: A total of 148 NSCLC patients who underwent neoadjuvant immunochemotherapy from two centers (SRRSH and ZCH) were retrospectively included. The SRRSH dataset (n=105) was used as the training and internal validation cohort. Radiomics features of intratumoral (T) and peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were extracted from pre-treatment CT. Intra- and inter- class correlation coefficients and least absolute shrinkage and selection operator were used to feature selection. Four single ROI models mentioned above and a combined radiomics (CR: T+P1+P2+P3) model were established by using machine learning algorithms. Clinical factors were selected to construct the combined radiomics-clinical (CRC) model, which was validated in the external center ZCH (n=43). The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis. RESULTS: Histopathological type was the only independent clinical risk factor. The model CR with eight selected radiomics features demonstrated a good predictive performance in the internal validation (AUC=0.810) and significantly improved than the model T (AUC=0.810 vs 0.619, p<0.05). The model CRC yielded the best predictive capability (AUC=0.814) and obtained satisfactory performance in the independent external test set (AUC=0.768, 95% CI: 0.62-0.91). CONCLUSION: We established a CRC model that incorporates intratumoral and peritumoral features and histopathological type, providing an effective approach for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.

摘要

目的:基于治疗前CT提取的肿瘤内及瘤周特征建立放射组学模型,以预测接受新辅助免疫化疗的非小细胞肺癌(NSCLC)患者的主要病理反应(MPR)。 方法:回顾性纳入来自两个中心(SRRSH和ZCH)的148例接受新辅助免疫化疗的NSCLC患者。SRRSH数据集(n = 105)用作训练和内部验证队列。从治疗前CT中提取肿瘤内(T)和瘤周区域(P1 = 0 - 5mm,P2 = 5 - 10mm,P3 = 10 - 15mm)的放射组学特征。使用组内和组间相关系数以及最小绝对收缩和选择算子进行特征选择。通过机器学习算法建立上述四个单ROI模型和一个联合放射组学(CR:T + P1 + P2 + P3)模型。选择临床因素构建联合放射组学 - 临床(CRC)模型,并在外部中心ZCH(n = 43)中进行验证。通过DeLong检验、校准曲线和决策曲线分析评估模型的性能。 结果:组织病理学类型是唯一独立的临床危险因素。具有八个选定放射组学特征的CR模型在内部验证中表现出良好的预测性能(AUC = 0.810),并且比T模型有显著改善(AUC = 0.810对0.619,p < 0.05)。CRC模型具有最佳的预测能力(AUC = 0.814),并且在独立的外部测试集中获得了令人满意的性能(AUC = 0.768,95%CI:0.62 - 0.91)。 结论:我们建立了一个整合肿瘤内和瘤周特征以及组织病理学类型的CRC模型,为选择适合新辅助免疫化疗的NSCLC患者提供了一种有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/2f77abe99521/fonc-14-1348678-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/7caa301f938c/fonc-14-1348678-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/36e08d36d7d8/fonc-14-1348678-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/57f9a8fec51e/fonc-14-1348678-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/2f77abe99521/fonc-14-1348678-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/7caa301f938c/fonc-14-1348678-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/36e08d36d7d8/fonc-14-1348678-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/57f9a8fec51e/fonc-14-1348678-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bebc/10996281/2f77abe99521/fonc-14-1348678-g004.jpg

相似文献

[1]
Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy.

Front Oncol. 2024-3-20

[2]
CT-based quantification of intratumoral heterogeneity for predicting pathologic complete response to neoadjuvant immunochemotherapy in non-small cell lung cancer.

Front Immunol. 2024

[3]
Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography.

Eur Radiol. 2022-5

[4]
A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy.

Curr Probl Cancer. 2024-6

[5]
An integrated model combined intra- and peritumoral regions for predicting chemoradiation response of non small cell lung cancers based on radiomics and deep learning.

Cancer Radiother. 2023-12

[6]
Intratumoral and peritumoral CT-based radiomics for predicting the microsatellite instability in gastric cancer.

Abdom Radiol (NY). 2024-5

[7]
A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy.

Front Oncol. 2022-8-2

[8]
Intratumoral and peritumoral radiomics predict pathological response after neoadjuvant chemotherapy against advanced gastric cancer.

Insights Imaging. 2024-1-25

[9]
Delta-radiomics features for predicting the major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer.

Eur Radiol. 2024-4

[10]
Assessment of Intratumoral and Peritumoral Computed Tomography Radiomics for Predicting Pathological Complete Response to Neoadjuvant Chemoradiation in Patients With Esophageal Squamous Cell Carcinoma.

JAMA Netw Open. 2020-9-1

引用本文的文献

[1]
Clinically Explainable Prediction of Immunotherapy Response Integrating Radiomics and Clinico-Pathological Information in Non-Small Cell Lung Cancer.

Cancers (Basel). 2025-8-18

[2]
Radiomics in head and neck squamous cell carcinoma - a leap towards precision oncology.

J Immunother Cancer. 2025-4-23

[3]
Radiomic Fingerprinting of the Peritumoral Edema in Brain Tumors.

Cancers (Basel). 2025-2-1

[4]
Neoadjuvant immunotherapy for non-small cell lung cancer: Opportunities and challenges.

Chin Med J Pulm Crit Care Med. 2024-12-12

[5]
Machine Learning and Computed Tomography Radiomics to Predict Disease Progression to Upfront Pembrolizumab Monotherapy in Advanced Non-Small-Cell Lung Cancer: A Pilot Study.

Cancers (Basel). 2024-12-28

[6]
Preoperative assessment of tertiary lymphoid structures in stage I lung adenocarcinoma using CT radiomics: a multicenter retrospective cohort study.

Cancer Imaging. 2024-12-18

[7]
Intratumoral and peritumoral radiomics model for the preoperative prediction of cribriform component in invasive lung adenocarcinoma: a multicenter study.

Clin Transl Oncol. 2025-5

本文引用的文献

[1]
uRP: An integrated research platform for one-stop analysis of medical images.

Front Radiol. 2023-4-18

[2]
Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer.

Front Immunol. 2023

[3]
A pre-treatment CT-based weighted radiomic approach combined with clinical characteristics to predict durable clinical benefits of immunotherapy in advanced lung cancer.

Eur Radiol. 2023-6

[4]
Effect of histology on the efficacy of immune checkpoint inhibitors in advanced non-small cell lung cancer: A systematic review and meta-analysis.

Front Oncol. 2022-11-10

[5]
Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: A multicentre study.

EBioMedicine. 2022-12

[6]
Predicting chemotherapy response in non-small-cell lung cancer computed tomography radiomic features: Peritumoral, intratumoral, or combined?

Front Oncol. 2022-8-8

[7]
Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer.

N Engl J Med. 2022-5-26

[8]
Revisiting neoadjuvant therapy in non-small-cell lung cancer.

Lancet Oncol. 2021-11

[9]
Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non-Small Cell Lung Cancer.

Radiology. 2022-1

[10]
Lung cancer.

Lancet. 2021-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索