Wang Weijie, Wang Xuben, Yu Xiaodong, Luo Debiao, Liu Xinyue, Yang Kai, Yang Wen, Yang Xiaolan, Hu Ke, Hu Wenyi
School of Geophysics, Chengdu University of Technology, Chengdu 610059, China.
Information Network Center, Chengdu University, Chengdu 610106, China.
Sensors (Basel). 2024 Dec 26;25(1):77. doi: 10.3390/s25010077.
Airborne transient electromagnetic (ATEM) surveys provide a fast, flexible approach for identifying conductive metal deposits across a variety of intricate terrains. Nonetheless, the secondary electromagnetic response signals captured by ATEM systems frequently suffer from numerous noise interferences, which impede effective data processing and interpretation. Traditional denoising methods often fall short in addressing these complex noise backgrounds, leading to less-than-optimal signal extraction. To tackle this issue, a deep learning-based denoising network, called BA-ATEMNet, is introduced, using Bayesian learning alongside a multi-head self-attention mechanism to effectively denoise ATEM signals. The incorporation of a multi-head self-attention mechanism significantly enhances the feature extraction capabilities of the convolutional neural network, allowing for improved differentiation between signal and noise. Moreover, the combination of Bayesian learning with a weighted integration of prior knowledge and SNR enhances the model's performance across varying noise levels, thereby increasing its adaptability to complex noise environments. Our experimental findings indicate that BA-ATEMNet surpasses other denoising models in both single and multiple noise conditions, achieving an average signal-to-noise ratio of 37.21 dB in multiple noise scenarios. This notable enhancement in SNR, compared to the next best model, which achieves an average SNR of 36.10 dB, holds substantial implications for ATEM-based mineral exploration and geological surveys.
航空瞬变电磁(ATEM)测量为识别各种复杂地形中的导电金属矿床提供了一种快速、灵活的方法。尽管如此,ATEM系统捕获的二次电磁响应信号经常受到大量噪声干扰,这阻碍了有效的数据处理和解释。传统的去噪方法在处理这些复杂的噪声背景时往往不足,导致信号提取效果欠佳。为了解决这个问题,引入了一种基于深度学习的去噪网络,称为BA - ATEMNet,它使用贝叶斯学习和多头自注意力机制来有效地对ATEM信号进行去噪。多头自注意力机制的加入显著增强了卷积神经网络的特征提取能力,使得信号与噪声之间的区分得到改善。此外,贝叶斯学习与先验知识和信噪比的加权积分相结合,提高了模型在不同噪声水平下的性能,从而增强了其对复杂噪声环境的适应性。我们的实验结果表明,BA - ATEMNet在单噪声和多噪声条件下均优于其他去噪模型,在多噪声场景中实现了37.21 dB的平均信噪比。与次优模型(平均信噪比为36.10 dB)相比,信噪比的显著提高对基于ATEM的矿产勘探和地质调查具有重要意义。