Suppr超能文献

基于深度复杂门控循环网络的物联网网络入侵检测系统

Deep Complex Gated Recurrent Networks-Based IoT Network Intrusion Detection Systems.

作者信息

El-Shafeiy Engy, Elsayed Walaa M, Elwahsh Haitham, Alsabaan Maazen, Ibrahem Mohamed I, Elhady Gamal Farouk

机构信息

Department of Computer Science, Faculty of Computers & Artificial Intelligence, University of Sadat City, Sadat City 32897, Egypt.

Department of Information Technology, Faculty of Computers & Information Systems, Damanhour University, Damanhour 22511, Egypt.

出版信息

Sensors (Basel). 2024 Sep 13;24(18):5933. doi: 10.3390/s24185933.

Abstract

The explosive growth of the Internet of Things (IoT) has highlighted the urgent need for strong network security measures. The distinctive difficulties presented by Internet of Things (IoT) environments, such as the wide variety of devices, the intricacy of network traffic, and the requirement for real-time detection capabilities, are difficult for conventional intrusion detection systems (IDS) to adjust to. To address these issues, we propose DCGR_IoT, an innovative intrusion detection system (IDS) based on deep neural learning that is intended to protect bidirectional communication networks in the IoT environment. DCGR_IoT employs advanced techniques to enhance anomaly detection capabilities. Convolutional neural networks (CNN) are used for spatial feature extraction and superfluous data are filtered to improve computing efficiency. Furthermore, complex gated recurrent networks (CGRNs) are used for the temporal feature extraction module, which is utilized by DCGR_IoT. Furthermore, DCGR_IoT harnesses complex gated recurrent networks (CGRNs) to construct multidimensional feature subsets, enabling a more detailed spatial representation of network traffic and facilitating the extraction of critical features that are essential for intrusion detection. The effectiveness of the DCGR_IoT was proven through extensive evaluations of the UNSW-NB15, KDDCup99, and IoT-23 datasets, which resulted in a high detection accuracy of 99.2%. These results demonstrate the DCG potential of DCGR-IoT as an effective solution for defending IoT networks against sophisticated cyber-attacks.

摘要

物联网(IoT)的爆炸式增长凸显了对强大网络安全措施的迫切需求。物联网(IoT)环境带来的独特困难,如设备种类繁多、网络流量复杂以及对实时检测能力的要求,传统入侵检测系统(IDS)难以适应。为了解决这些问题,我们提出了DCGR_IoT,一种基于深度神经网络的创新入侵检测系统(IDS),旨在保护物联网环境中的双向通信网络。DCGR_IoT采用先进技术来增强异常检测能力。卷积神经网络(CNN)用于空间特征提取,并对多余数据进行过滤以提高计算效率。此外,复杂门控循环网络(CGRN)用于DCGR_IoT所使用的时间特征提取模块。此外,DCGR_IoT利用复杂门控循环网络(CGRN)构建多维特征子集,能够更详细地表示网络流量的空间特征,并有助于提取入侵检测所需的关键特征。通过对UNSW-NB15、KDDCup99和IoT-23数据集的广泛评估,证明了DCGR_IoT的有效性,检测准确率高达99.2%。这些结果证明了DCGR-IoT作为一种有效解决方案,在防御物联网网络免受复杂网络攻击方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/888a/11435862/bf3be446a0a6/sensors-24-05933-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验