Suppr超能文献

MultiPhys:用于基于视频的多任务生理测量的曼巴与Transformer异构融合

MultiPhys: Heterogeneous Fusion of Mamba and Transformer for Video-Based Multi-Task Physiological Measurement.

作者信息

Huo Chaoyang, Yin Pengbo, Fu Bo

机构信息

School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.

出版信息

Sensors (Basel). 2024 Dec 27;25(1):100. doi: 10.3390/s25010100.

Abstract

Due to its non-contact characteristics, remote photoplethysmography (rPPG) has attracted widespread attention in recent years, and has been widely applied for remote physiological measurements. However, most of the existing rPPG models are unable to estimate multiple physiological signals simultaneously, and the performance of the limited available multi-task models is also restricted due to their single-model architectures. To address the above problems, this study proposes MultiPhys, adopting a heterogeneous network fusion approach for its development. Specifically, a Convolutional Neural Network (CNN) is used to quickly extract local features in the early stage, a transformer captures global context and long-distance dependencies, and Mamba is used to compensate for the transformer's deficiencies, reducing the computational complexity and improving the accuracy of the model. Additionally, a gate is utilized for feature selection, which classifies the features of different physiological indicators. Finally, physiological indicators are estimated after passing features to each task-related head. Experiments on three datasets show that MultiPhys has superior performance in handling multiple tasks. The results of cross-dataset and hyper-parameter sensitivity tests also verify its generalization ability and robustness, respectively. MultiPhys can be considered as an effective solution for remote physiological estimation, thus promoting the development of this field.

摘要

由于其非接触特性,近年来远程光电容积脉搏波描记法(rPPG)引起了广泛关注,并已广泛应用于远程生理测量。然而,现有的大多数rPPG模型无法同时估计多个生理信号,并且有限的可用多任务模型的性能也因其单模型架构而受到限制。为了解决上述问题,本研究提出了MultiPhys,采用异构网络融合方法进行开发。具体来说,在早期阶段使用卷积神经网络(CNN)快速提取局部特征,使用Transformer捕获全局上下文和长距离依赖关系,并使用Mamba来弥补Transformer的不足,降低计算复杂度并提高模型的准确性。此外,利用一个门进行特征选择,对不同生理指标的特征进行分类。最后,在将特征传递到每个与任务相关的头部后估计生理指标。在三个数据集上的实验表明,MultiPhys在处理多个任务方面具有卓越的性能。跨数据集和超参数敏感性测试的结果也分别验证了其泛化能力和鲁棒性。MultiPhys可被视为远程生理估计的有效解决方案,从而推动该领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6cc/11722562/f3ce08fa4cc2/sensors-25-00100-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验