Suppr超能文献

用于使用斑马鱼幼虫特征关键点进行形态计量分析的十字形热张量网络。

Cross-Shaped Heat Tensor Network for Morphometric Analysis Using Zebrafish Larvae Feature Keypoints.

作者信息

Chai Xin, Sun Tan, Li Zhaoxin, Zhang Yanqi, Sun Qixin, Zhang Ning, Qiu Jing, Chai Xiujuan

机构信息

Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.

出版信息

Sensors (Basel). 2024 Dec 28;25(1):132. doi: 10.3390/s25010132.

Abstract

Deep learning-based morphometric analysis of zebrafish is widely utilized for non-destructively identifying abnormalities and diagnosing diseases. However, obtaining discriminative and continuous organ category decision boundaries poses a significant challenge by directly observing zebrafish larvae from the outside. To address this issue, this study simplifies the organ areas to polygons and focuses solely on the endpoint positioning. Specifically, we introduce a deep learning-based feature endpoint detection method for quantitatively determining zebrafish larvae's essential phenotype and organ features. We propose the cross-shaped heat tensor network (CSHT-Net), a feature point detection framework consisting of a novel keypoint training method named cross-shaped heat tensor and a feature extractor called combinatorial convolutional block. Our model alleviates the problem of the heatmap-based method that restricts attention to local regions around key points while enhancing the model's ability to learn continuous, strip-like features. Moreover, we compiled a dataset of 4389 bright-field micrographs of zebrafish larvae at 120 h post-fertilization for the model training and algorithm evaluation of zebrafish phenotypic traits. The proposed framework achieves an average precision (AP) of 83.2% and an average recall (AR) of 85.8%, outperforming multiple widely adopted keypoint detection techniques. This approach enables robust phenotype extraction and reliable morphometric analysis for zebrafish larvae, fostering efficient hazard identification for chemicals and medical products.

摘要

基于深度学习的斑马鱼形态计量分析被广泛用于无损识别异常和诊断疾病。然而,通过直接从外部观察斑马鱼幼虫来获得具有区分性和连续性的器官类别决策边界面临着重大挑战。为了解决这个问题,本研究将器官区域简化为多边形,并仅关注端点定位。具体而言,我们引入了一种基于深度学习的特征端点检测方法,用于定量确定斑马鱼幼虫的基本表型和器官特征。我们提出了十字形热张量网络(CSHT-Net),这是一个特征点检测框架,由一种名为十字形热张量的新型关键点训练方法和一个名为组合卷积块的特征提取器组成。我们的模型缓解了基于热图的方法将注意力限制在关键点周围局部区域的问题,同时增强了模型学习连续的、带状特征的能力。此外,我们编制了一个包含4389张受精后120小时斑马鱼幼虫明场显微照片的数据集,用于斑马鱼表型特征的模型训练和算法评估。所提出的框架实现了83.2%的平均精度(AP)和85.8%的平均召回率(AR),优于多种广泛采用的关键点检测技术。这种方法能够对斑马鱼幼虫进行稳健的表型提取和可靠的形态计量分析,促进对化学品和医疗产品的高效危害识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2766/11723118/f09b39ecb6da/sensors-25-00132-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验