Suppr超能文献

EBR-YOLO:一种基于无人机航拍图像的非机动车辆轻量级检测方法。

EBR-YOLO: A Lightweight Detection Method for Non-Motorized Vehicles Based on Drone Aerial Images.

作者信息

Zhou Meijia, Wan Xuefen, Yang Yi, Zhang Jie, Li Siwen, Zhou Shubo, Jiang Xueqin

机构信息

College of Information Science and Technology, Donghua University, Shanghai 201620, China.

College of Computer Science, North China Institute of Science and Technology, Langfang 065201, China.

出版信息

Sensors (Basel). 2025 Jan 1;25(1):196. doi: 10.3390/s25010196.

Abstract

Modern city construction focuses on developing smart transportation, but the recognition of the large number of non-motorized vehicles in the city is still not sufficient. Compared to fixed recognition equipment, drones have advantages in image acquisition due to their flexibility and maneuverability. With the dataset collected from aerial images taken by drones, this study proposed a novel lightweight architecture for small objection detection based on YOLO framework, named EBR-YOLO. Firstly, since the targets in the application scenario are generally small, the number of Backbone layers is reduced, and the AZML module is proposed to enrich the detail information and enhance the model learning capability. Secondly, the C2f module is reconstructed using part of the convolutional PConv to reduce the network's computational volume and improve the detection speed. Finally, the downsampling operation is reshaped by combining with the introduced ADown module to further reduce the computational amount of the model. The experimental results show that the algorithm achieves an mAP of 98.9% and an FPS of 89.8 on the self-built dataset of this paper, which is only 0.2% and 0.3 lower compared to the original YOLOv8 network, respectively, and the number of parameters is 70% lower compared to the baseline, which ensures the accuracy and computational speed of the model while reducing its computational volume greatly. At the same time, the model generalization experiments are carried out on the UCAS-AOD and CARPK datasets, and the performance of the model is almost the same as the baseline.

摘要

现代城市建设注重发展智能交通,但对城市中大量非机动车的识别仍不够充分。与固定识别设备相比,无人机因其灵活性和机动性在图像采集方面具有优势。基于无人机航拍图像收集的数据集,本研究提出了一种基于YOLO框架的用于小目标检测的新型轻量级架构,名为EBR-YOLO。首先,由于应用场景中的目标通常较小,减少了骨干层数量,并提出了AZML模块以丰富细节信息并增强模型学习能力。其次,使用部分卷积PConv对C2f模块进行重构,以减少网络的计算量并提高检测速度。最后,结合引入的ADown模块对下采样操作进行重塑,以进一步减少模型的计算量。实验结果表明,该算法在本文自建数据集上实现了98.9%的平均精度均值(mAP)和89.8的每秒帧数(FPS),分别比原始YOLOv8网络低0.2%和0.3%,且参数数量比基线低70%,在大幅减少计算量的同时确保了模型的准确性和计算速度。同时,在UCAS-AOD和CARPK数据集上进行了模型泛化实验,模型性能与基线几乎相同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c6/11723268/b0cd8ac16bbf/sensors-25-00196-g001.jpg

相似文献

2
MPE-YOLO: enhanced small target detection in aerial imaging.
Sci Rep. 2024 Aug 1;14(1):17799. doi: 10.1038/s41598-024-68934-2.
3
VM-YOLO: YOLO with VMamba for Strawberry Flowers Detection.
Plants (Basel). 2025 Feb 5;14(3):468. doi: 10.3390/plants14030468.
6
A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8.
Sensors (Basel). 2024 Oct 9;24(19):6495. doi: 10.3390/s24196495.
7
A novel lightweight YOLOv8-PSS model for obstacle detection on the path of unmanned agricultural vehicles.
Front Plant Sci. 2024 Dec 24;15:1509746. doi: 10.3389/fpls.2024.1509746. eCollection 2024.
8
YOLO-PEL: The Efficient and Lightweight Vehicle Detection Method Based on YOLO Algorithm.
Sensors (Basel). 2025 Mar 21;25(7):1959. doi: 10.3390/s25071959.
10
An android-smartphone application for rice panicle detection and rice growth stage recognition using a lightweight YOLO network.
Front Plant Sci. 2025 Apr 16;16:1561632. doi: 10.3389/fpls.2025.1561632. eCollection 2025.

引用本文的文献

1
Target Detection Method for Soil-Dwelling Termite Damage Based on MCD-YOLOv8.
Sensors (Basel). 2025 Mar 31;25(7):2199. doi: 10.3390/s25072199.

本文引用的文献

1
RailFOD23: A dataset for foreign object detection on railroad transmission lines.
Sci Data. 2024 Jan 16;11(1):72. doi: 10.1038/s41597-024-02918-9.
3
Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation.
IEEE Trans Cybern. 2022 Aug;52(8):8574-8586. doi: 10.1109/TCYB.2021.3095305. Epub 2022 Jul 19.
4
Riding behavior and electric bike traffic crashes: A Chinese case-control study.
Traffic Inj Prev. 2020;21(1):24-28. doi: 10.1080/15389588.2019.1696963. Epub 2019 Dec 17.
5
Mask R-CNN.
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397. doi: 10.1109/TPAMI.2018.2844175. Epub 2018 Jun 5.
6
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验