Suppr超能文献

基于脑电图(EEG)分析的抑郁症检测与诊断:一项系统综述。

Depression Detection and Diagnosis Based on Electroencephalogram (EEG) Analysis: A Systematic Review.

作者信息

Elnaggar Kholoud, El-Gayar Mostafa M, Elmogy Mohammed

机构信息

Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt.

Department of Computer Science, Arab East Colleges, Riyadh 11583, Saudi Arabia.

出版信息

Diagnostics (Basel). 2025 Jan 17;15(2):210. doi: 10.3390/diagnostics15020210.

Abstract

Mental disorders are disturbances of brain functions that cause cognitive, affective, volitional, and behavioral functions to be disrupted to varying degrees. One of these disorders is depression, a significant factor contributing to the increase in suicide cases worldwide. Consequently, depression has become a significant public health issue globally. Electroencephalogram (EEG) data can be utilized to diagnose mild depression disorder (MDD), offering valuable insights into the pathophysiological mechanisms underlying mental disorders and enhancing the understanding of MDD. This survey emphasizes the critical role of EEG in advancing artificial intelligence (AI)-driven approaches for depression diagnosis. By focusing on studies that integrate EEG with machine learning (ML) and deep learning (DL) techniques, we systematically analyze methods utilizing EEG signals to identify depression biomarkers. The survey highlights advancements in EEG preprocessing, feature extraction, and model development, showcasing how these approaches enhance the diagnostic precision, scalability, and automation of depression detection. This survey is distinguished from prior reviews by addressing their limitations and providing researchers with valuable insights for future studies. It offers a comprehensive comparison of ML and DL approaches utilizing EEG and an overview of the five key steps in depression detection. The survey also presents existing datasets for depression diagnosis and critically analyzes their limitations. Furthermore, it explores future directions and challenges, such as enhancing diagnostic robustness with data augmentation techniques and optimizing EEG channel selection for improved accuracy. The potential of transfer learning and encoder-decoder architectures to leverage pre-trained models and enhance diagnostic performance is also discussed. Advancements in feature extraction methods for automated depression diagnosis are highlighted as avenues for improving ML and DL model performance. Additionally, integrating Internet of Things (IoT) devices with EEG for continuous mental health monitoring and distinguishing between different types of depression are identified as critical research areas. Finally, the review emphasizes improving the reliability and predictability of computational intelligence-based models to advance depression diagnosis. This study will serve as a well-organized and helpful reference for researchers working on detecting depression using EEG signals and provide insights into the future directions outlined above, guiding further advancements in the field.

摘要

精神障碍是大脑功能的紊乱,会导致认知、情感、意志和行为功能受到不同程度的干扰。其中一种障碍是抑郁症,它是全球自杀率上升的一个重要因素。因此,抑郁症已成为全球一个重大的公共卫生问题。脑电图(EEG)数据可用于诊断轻度抑郁症(MDD),为精神障碍的病理生理机制提供有价值的见解,并增进对MDD的理解。本综述强调了EEG在推进人工智能(AI)驱动的抑郁症诊断方法方面的关键作用。通过关注将EEG与机器学习(ML)和深度学习(DL)技术相结合的研究,我们系统地分析了利用EEG信号识别抑郁症生物标志物的方法。该综述突出了EEG预处理、特征提取和模型开发方面的进展,展示了这些方法如何提高抑郁症检测的诊断精度、可扩展性和自动化程度。本综述与先前的综述不同之处在于解决了它们的局限性,并为研究人员提供了未来研究的宝贵见解。它对利用EEG的ML和DL方法进行了全面比较,并概述了抑郁症检测的五个关键步骤。该综述还介绍了现有的抑郁症诊断数据集,并对其局限性进行了批判性分析。此外,它还探讨了未来的方向和挑战,例如使用数据增强技术提高诊断稳健性以及优化EEG通道选择以提高准确性。还讨论了迁移学习和编码器 - 解码器架构利用预训练模型并提高诊断性能的潜力。自动抑郁症诊断特征提取方法的进展被强调为提高ML和DL模型性能的途径。此外,将物联网(IoT)设备与EEG集成以进行持续的心理健康监测以及区分不同类型的抑郁症被确定为关键研究领域。最后,该综述强调提高基于计算智能的模型的可靠性和可预测性以推进抑郁症诊断。这项研究将为使用EEG信号检测抑郁症的研究人员提供条理清晰且有用的参考,并为上述未来方向提供见解,指导该领域的进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8f/11765027/d68a1f1e38a9/diagnostics-15-00210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验