Suppr超能文献

用于目标检测的尺度一致且时间集成的无监督域适应

Scale-Consistent and Temporally Ensembled Unsupervised Domain Adaptation for Object Detection.

作者信息

Guo Lunfeng, Zhang Yizhe, Liu Jiayin, Liu Huajie, Li Yunwang

机构信息

School of Mechanical and Electrical Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.

Mining University (Beijing) Inner Mongolia Research Institute, Ordos 017000, China.

出版信息

Sensors (Basel). 2025 Jan 3;25(1):230. doi: 10.3390/s25010230.

Abstract

Unsupervised Domain Adaptation for Object Detection (UDA-OD) aims to adapt a model trained on a labeled source domain to an unlabeled target domain, addressing challenges posed by domain shifts. However, existing methods often face significant challenges, particularly in detecting small objects and over-relying on classification confidence for pseudo-label selection, which often leads to inaccurate bounding box localization. To address these issues, we propose a novel UDA-OD framework that leverages scale consistency (SC) and Temporal Ensemble Pseudo-Label Selection (TEPLS) to enhance cross-domain robustness and detection performance. Specifically, we introduce Cross-Scale Prediction Consistency (CSPC) to enforce consistent detection across multiple resolutions, improving detection robustness for objects of varying scales. Additionally, we integrate Intra-Class Feature Consistency (ICFC), which employs contrastive learning to align feature representations within each class, further enhancing adaptation. To ensure high-quality pseudo-labels, TEPLS combines temporal localization stability with classification confidence, mitigating the impact of noisy predictions and improving both classification and localization accuracy. Extensive experiments on challenging benchmarks, including Cityscapes to Foggy Cityscapes, Sim10k to Cityscapes, and Virtual Mine to Actual Mine, demonstrate that our method achieves state-of-the-art performance, with notable improvements in small object detection and overall cross-domain robustness. These results highlight the effectiveness of our framework in addressing key limitations of existing UDA-OD approaches.

摘要

用于目标检测的无监督域适应(UDA-OD)旨在将在有标签的源域上训练的模型适应到无标签的目标域,以应对域转移带来的挑战。然而,现有方法往往面临重大挑战,特别是在检测小目标以及过度依赖分类置信度进行伪标签选择方面,这常常导致边界框定位不准确。为了解决这些问题,我们提出了一种新颖的UDA-OD框架,该框架利用尺度一致性(SC)和时间集成伪标签选择(TEPLS)来增强跨域鲁棒性和检测性能。具体而言,我们引入了跨尺度预测一致性(CSPC)以在多个分辨率上强制进行一致的检测,提高对不同尺度目标的检测鲁棒性。此外,我们整合了类内特征一致性(ICFC),它采用对比学习来对齐每个类内的特征表示,进一步增强适应性。为了确保高质量的伪标签,TEPLS将时间定位稳定性与分类置信度相结合,减轻噪声预测的影响并提高分类和定位精度。在具有挑战性的基准测试上进行的大量实验,包括从Cityscapes到Foggy Cityscapes、从Sim10k到Cityscapes以及从Virtual Mine到Actual Mine,表明我们的方法取得了领先的性能,在小目标检测和整体跨域鲁棒性方面有显著改进。这些结果突出了我们的框架在解决现有UDA-OD方法的关键局限性方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验