Chen Wenshuang, Ye Qi, Guo Lihua, Wu Qi
School of Electronic and Information Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510641, China.
Med Biol Eng Comput. 2025 Feb 13. doi: 10.1007/s11517-025-03312-2.
Unsupervised domain adaptation (UDA) offers a promising approach to enhance discriminant performance on target domains by utilizing domain adaptation techniques. These techniques enable models to leverage knowledge from the source domain to adjust to the feature distribution in the target domain. This paper proposes a unified domain adaptation framework to carry out cross-modality medical image segmentation from two perspectives: image and feature. To achieve image alignment, the loss function of Fourier-based Contrastive Style Augmentation (FCSA) has been fine-tuned to increase the impact of style change for improving system robustness. For feature alignment, a module called Source-domain Labels Guided Contrastive Learning (SLGCL) has been designed to encourage the target domain to align features of different classes with those in the source domain. In addition, a generative adversarial network has been incorporated to ensure consistency in spatial layout and local context in generated image space. According to our knowledge, our method is the first attempt to utilize source domain class intensity information to guide target domain class intensity information for feature alignment in an unsupervised domain adaptation setting. Extensive experiments conducted on a public whole heart image segmentation task demonstrate that our proposed method outperforms state-of-the-art UDA methods for medical image segmentation.
无监督域适应(UDA)提供了一种很有前景的方法,可通过利用域适应技术来提高在目标域上的判别性能。这些技术使模型能够利用源域的知识来适应目标域中的特征分布。本文从图像和特征两个角度提出了一个统一的域适应框架,以进行跨模态医学图像分割。为了实现图像对齐,基于傅里叶的对比风格增强(FCSA)的损失函数已被微调,以增加风格变化的影响,从而提高系统鲁棒性。对于特征对齐,设计了一个名为源域标签引导对比学习(SLGCL)的模块,以促使目标域将不同类别的特征与源域中的特征对齐。此外,还引入了一个生成对抗网络,以确保生成图像空间中的空间布局和局部上下文的一致性。据我们所知,我们的方法是首次尝试在无监督域适应设置中利用源域类强度信息来指导目标域类强度信息进行特征对齐。在一个公共的全心脏图像分割任务上进行的大量实验表明,我们提出的方法在医学图像分割方面优于当前最先进的无监督域适应方法。