Suppr超能文献

神经网络复杂性对神经肌肉疾病患者MRI图像中单个大腿肌肉自动分割的重要性。

Importance of neural network complexity for the automatic segmentation of individual thigh muscles in MRI images from patients with neuromuscular diseases.

作者信息

Martin Sandra, André Rémi, Trabelsi Amira, Michel Constance P, Fortanier Etienne, Attarian Shahram, Guye Maxime, Dubois Marc, Abdeddaim Redha, Bendahan David

机构信息

Multiwave Technologies, Marseille, France.

Aix Marseille Univ, CNRS, CRMBM, Marseille, France.

出版信息

MAGMA. 2025 Apr;38(2):175-189. doi: 10.1007/s10334-024-01221-3. Epub 2025 Jan 11.

Abstract

OBJECTIVE

Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.

MATERIAL AND METHODS

U-Net architectures with different complexities have been compared for the quantification of the fat fraction in each muscle group selected in the central part of the thigh region. The corresponding performance has been assessed in terms of Dice score (DSC) and FF quantification error. The database contained 1450 thigh images from 59 patients and 14 healthy subjects (age: 47 ± 17 years, sex: 36F, 37M). Ten individual muscles were segmented in each image. The performance of each model was compared to nnU-Net, a complex architecture with 4.35 10 parameters, 12.8 Gigabytes of peak memory usage and 167 h of training time.

RESULTS

As expected, nnU-Net achieved the highest DSC (94.77 ± 0.13%). A simpler U-Net (5.81 10 parameters, 2.37 Gigabytes, 14 h of training time) achieved a lower DSC but still above 90%. Surprisingly, both models achieved a comparable FF estimation.

DISCUSSION

The poor correlation between observed DSC and FF indicates that less complex architectures, reducing GPU memory utilization and training time, can still accurately quantify FF.

摘要

目的

在磁共振成像(MRI)图像中对单个大腿肌肉进行分割,对于监测神经肌肉疾病和量化相关生物标志物(如脂肪分数(FF))至关重要。诸如U-Net等深度学习方法已在该领域证明了有效性。然而,在单个肌肉的FF量化中,降低神经网络复杂度的影响尚未得到探索。

材料与方法

比较了具有不同复杂度的U-Net架构,用于量化大腿区域中部选定的每个肌肉群中的脂肪分数。根据骰子系数(DSC)和FF量化误差评估了相应的性能。该数据库包含来自59名患者和14名健康受试者(年龄:47±17岁,性别:36名女性,37名男性)的1450张大腿图像。在每张图像中分割出10块单个肌肉。将每个模型的性能与nnU-Net进行比较,nnU-Net是一种具有4.35×10个参数、12.8千兆字节的峰值内存使用量和167小时训练时间的复杂架构。

结果

正如预期的那样,nnU-Net实现了最高的DSC(94.77±0.13%)。一个更简单的U-Net(5.81×10个参数、2.37千兆字节、14小时训练时间)实现了较低的DSC,但仍高于90%。令人惊讶的是,两个模型都实现了相当的FF估计。

讨论

观察到的DSC与FF之间的相关性较差,这表明复杂度较低的架构在降低GPU内存利用率和训练时间的情况下,仍能准确量化FF。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验