Suppr超能文献

基于深度学习的大腿肌肉分割,用于使用脂肪-水分解磁共振成像进行可重复的脂肪分数定量。

Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat-water decomposition MRI.

作者信息

Ding Jie, Cao Peng, Chang Hing-Chiu, Gao Yuan, Chan Sophelia Hoi Shan, Vardhanabhuti Varut

机构信息

Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.

Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.

出版信息

Insights Imaging. 2020 Nov 30;11(1):128. doi: 10.1186/s13244-020-00946-8.

Abstract

BACKGROUND

Time-efficient and accurate whole volume thigh muscle segmentation is a major challenge in moving from qualitative assessment of thigh muscle MRI to more quantitative methods. This study developed an automated whole thigh muscle segmentation method using deep learning for reproducible fat fraction quantification on fat-water decomposition MRI.

RESULTS

This study was performed using a public reference database (Dataset 1, 25 scans) and a local clinical dataset (Dataset 2, 21 scans). A U-net was trained using 23 scans (16 from Dataset 1, seven from Dataset 2) to automatically segment four functional muscle groups: quadriceps femoris, sartorius, gracilis and hamstring. The segmentation accuracy was evaluated on an independent testing set (3 × 3 repeated scans in Dataset 1 and four scans in Dataset 2). The average Dice coefficients between manual and automated segmentation were > 0.85. The average percent difference (absolute) in volume was 7.57%, and the average difference (absolute) in mean fat fraction (meanFF) was 0.17%. The reproducibility in meanFF was calculated using intraclass correlation coefficients (ICCs) for the repeated scans, and automated segmentation produced overall higher ICCs than manual segmentation (0.921 vs. 0.902). A preliminary quantitative analysis was performed using two-sample t test to detect possible differences in meanFF between 14 normal and 14 abnormal (with fat infiltration) thighs in Dataset 2 using automated segmentation, and significantly higher meanFF was detected in abnormal thighs.

CONCLUSIONS

This automated thigh muscle segmentation exhibits excellent accuracy and higher reproducibility in fat fraction estimation compared to manual segmentation, which can be further used for quantifying fat infiltration in thigh muscles.

摘要

背景

从对大腿肌肉MRI的定性评估转向更定量的方法时,高效且准确的全容积大腿肌肉分割是一项重大挑战。本研究开发了一种使用深度学习的自动全大腿肌肉分割方法,用于在脂肪-水分解MRI上进行可重复的脂肪分数定量分析。

结果

本研究使用了一个公共参考数据库(数据集1,25次扫描)和一个本地临床数据集(数据集2,21次扫描)。使用23次扫描(16次来自数据集1,7次来自数据集2)训练了一个U-net,以自动分割四个功能肌肉群:股四头肌、缝匠肌、股薄肌和腘绳肌。在一个独立测试集上评估分割准确性(数据集1中的3×3重复扫描和数据集2中的4次扫描)。手动分割和自动分割之间的平均Dice系数>0.85。体积的平均百分比差异(绝对值)为7.57%,平均脂肪分数(meanFF)的平均差异(绝对值)为0.17%。使用重复扫描的组内相关系数(ICC)计算meanFF的可重复性,自动分割产生的总体ICC高于手动分割(0.921对0.902)。使用双样本t检验进行了初步定量分析,以检测使用自动分割的数据集2中14条正常大腿和14条异常(有脂肪浸润)大腿之间meanFF的可能差异,并且在异常大腿中检测到显著更高的meanFF。

结论

与手动分割相比,这种自动大腿肌肉分割在脂肪分数估计方面表现出优异的准确性和更高的可重复性,可进一步用于量化大腿肌肉中的脂肪浸润。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c943/7704819/3c7d9daba8e8/13244_2020_946_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验