Suppr超能文献

用于高效渗透能转换应用的工程化磺化多孔碳/纤维素纳米纤维混合膜

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

作者信息

He Qianxi, Qi Shuang, Ahmad Mehraj, Zhang Tingwei, Wang Sha

机构信息

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.

Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China.

出版信息

Int J Biol Macromol. 2025 Mar;296:139643. doi: 10.1016/j.ijbiomac.2025.139643. Epub 2025 Jan 10.

Abstract

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations. Incorporation of carboxyl groups on the T-CNF surface and the sulfonic acid groups within SPC confers high cation selectivity, reaching up to 0.88, and enhances high energy conversion efficiency to 38.3 %. Furthermore, the SPC component forms three-dimensional interconnected nanopore channels that serve as extensive ion transport pathways, allowing the hybrid membranes to exhibit high transmembrane ion flux. This structural design enhances ion conductivity, reaching up to 0.8 S/cm at low KCl concentrations (≤0.01 M). With their high ion selectivity and rapid ion transport capabilities, SPC/T-CNF hybrid membranes achieve high-performance osmotic energy conversion, delivering an output power density of 1.08 W/m under conditions simulating the interface of seawater and river water, while maintaining stability over 25 days. This economical and easily fabricated porous nanofluidic hybrid membrane featuring nano-porous carbon paves the way for advanced energy-harvesting devices.

摘要

利用离子梯度发电激发了人们开发具有带电纳米通道的纳米流体膜用于渗透能转换。然而,由于离子选择性和纳米通道膜渗透性之间的权衡,实现高性能的渗透能输出仍然难以捉摸。在本研究中,我们报道了一种由磺化纳米多孔碳(SPC)和TEMPO氧化纤维素纳米纤维(T-CNF)组成的均质纳米流体膜,其设计旨在克服这些限制。T-CNF表面的羧基和SPC中的磺酸基团赋予了高阳离子选择性,高达0.88,并将能量转换效率提高到38.3%。此外,SPC组分形成三维相互连接的纳米孔通道,作为广泛的离子传输途径,使混合膜表现出高跨膜离子通量。这种结构设计提高了离子电导率,在低KCl浓度(≤0.01 M)下高达0.8 S/cm。凭借其高离子选择性和快速离子传输能力,SPC/T-CNF混合膜实现了高性能的渗透能转换,在模拟海水和河水界面的条件下输出功率密度为1.08 W/m,同时在25天内保持稳定性。这种具有纳米多孔碳的经济且易于制造的多孔纳米流体混合膜为先进的能量收集装置铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验