Song Jiale, Zhang Ying, Sheng Nan, Han Zhiliang, Qu Xiangyang, Zhou Zhou, Lv Xiangguo, Chen Shiyan, Wang Huaping
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Shipbuilding Technology Research Institute, Shanghai 200032, PR China.
Int J Biol Macromol. 2025 May;306(Pt 3):141655. doi: 10.1016/j.ijbiomac.2025.141655. Epub 2025 Mar 1.
Osmotic energy conversion based on bio-inspired layered membranes has garnered significant interest. However, traditional biomass ion-selective membranes suffer from complex preparation, uneconomic nature, poor selectivity, and low power density. Here, we introduce scalable one-step in situ culture for nanofluidic membrane materials (GO/C-BC) composed of graphene oxide (GO), carboxymethyl cellulose sodium salt (CMC), and bacterial cellulose (BC). This preparation method effectively combines 1D and 2D nanochannels, reduces membrane resistance, and increases power density. The GO/C-BC membrane exhibits excellent cation selectivity (0.89), achieving energy conversion efficiency of 31.40 % and delivering a power density of 7.49 W m under a 500-fold concentration gradient. Stability tests under artificial seawater and river water conditions show only a 4.44 % decrease in power density after 20 d, highlighting its excellent stability and durability. Moreover, by connecting 28 power units in series, the membrane can produce a voltage output of -4 V. This scalable and environmentally friendly biomass material presents new avenues for osmotic energy conversion.
基于仿生层状膜的渗透能转换已引起广泛关注。然而,传统的生物质离子选择性膜存在制备复杂、不经济、选择性差和功率密度低等问题。在此,我们介绍了一种可扩展的一步原位培养法,用于制备由氧化石墨烯(GO)、羧甲基纤维素钠盐(CMC)和细菌纤维素(BC)组成的纳米流体膜材料(GO/C-BC)。这种制备方法有效地结合了一维和二维纳米通道,降低了膜电阻,提高了功率密度。GO/C-BC膜表现出优异的阳离子选择性(0.89),在500倍浓度梯度下实现了31.40%的能量转换效率和7.49 W m的功率密度。在人工海水和河水条件下的稳定性测试表明,20天后功率密度仅下降4.44%,突出了其优异的稳定性和耐久性。此外,通过将28个功率单元串联连接,该膜可产生-4 V的电压输出。这种可扩展且环保的生物质材料为渗透能转换提供了新途径。