Lobov Arseniy, Kuchur Polina, Boyarskaya Nadezhda, Perepletchikova Daria, Taraskin Ivan, Ivashkin Andrei, Kostina Daria, Khvorova Irina, Uspensky Vladimir, Repkin Egor, Denisov Evgeny, Gerashchenko Tatiana, Tikhilov Rashid, Bozhkova Svetlana, Karelkin Vitaly, Wang Chunli, Xu Kang, Malashicheva Anna
Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, St. Petersburg, 194064, Russia.
Almazov National Medical Research Centre, St. Petersburg, 197341, Russia.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giae110.
Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation. For proteomics, we utilized 3 data acquisition/analysis techniques: data-dependent acquisition (DDA)-parallel accumulation serial fragmentation (PASEF) and data-independent acquisition (DIA)-PASEF with a classic library-based (DIA) and machine learning-based library-free search (DIA-ML). Using RNA sequencing data as a biological reference, we compared these 3 analytical techniques in the context of actual biological experiments. We use this comprehensive dataset to reveal distinct proteomic and transcriptomic profiles between VICs and osteoblasts, highlighting specific biological processes in their osteogenic differentiation pathways. The study identified potential therapeutic targets specific for VICs osteogenic differentiation in CAVD, including the MAOA and ERK1/2 pathway. From a technical perspective, we found that DIA-based methods demonstrate even higher superiority against DDA for more sophisticated human primary cell cultures than it was shown before on HeLa samples. While the classic library-based DIA approach has proved to be a gold standard for shotgun proteomics research, the DIA-ML offers significant advantages with a relatively minor compromise in data reliability, making it the method of choice for routine proteomics.
成骨分化在正常骨形成和病理性钙化(如钙化性主动脉瓣疾病,CAVD)中至关重要。了解这种分化背后的蛋白质组学和转录组学情况可以揭示CAVD的潜在治疗靶点。在本研究中,我们在timsTOF Pro平台上采用RNA测序转录组学和蛋白质组学技术,以探索成骨分化过程中瓣膜间质细胞(VICs)和成骨细胞的多组学图谱。对于蛋白质组学,我们使用了3种数据采集/分析技术:数据依赖采集(DDA)-平行累积连续碎裂(PASEF)以及基于经典文库(DIA)和基于机器学习的无文库搜索(DIA-ML)的数据独立采集(DIA)-PASEF。以RNA测序数据作为生物学参考,我们在实际生物学实验的背景下比较了这3种分析技术。我们利用这个全面的数据集揭示VICs和成骨细胞之间不同的蛋白质组学和转录组学图谱,突出它们成骨分化途径中的特定生物学过程。该研究确定了CAVD中VICs成骨分化特有的潜在治疗靶点,包括单胺氧化酶A(MAOA)和细胞外信号调节激酶1/2(ERK1/2)途径。从技术角度来看,我们发现基于DIA的方法在更复杂的人类原代细胞培养中比之前在HeLa样本上所显示的对DDA表现出更高的优越性。虽然基于经典文库的DIA方法已被证明是鸟枪法蛋白质组学研究的金标准,但DIA-ML在数据可靠性方面仅有相对较小的妥协,却具有显著优势,使其成为常规蛋白质组学的首选方法。