Suppr超能文献

使用spvAPA对单细胞和空间转录组学数据中的可变多聚腺苷酸化进行监督分析。

Supervised analysis of alternative polyadenylation from single-cell and spatial transcriptomics data with spvAPA.

作者信息

Zhang Qinglong, Kang Liping, Yang Haoran, Liu Fei, Wu Xiaohui

机构信息

Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China.

Jiangsu Key Laboratory of Infection and Immunity, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae720.

Abstract

Alternative polyadenylation (APA) is an important driver of transcriptome diversity that generates messenger RNA isoforms with distinct 3' ends. The rapid development of single-cell and spatial transcriptomic technologies opened up new opportunities for exploring APA data to discover hidden cell subpopulations invisible in conventional gene expression analysis. However, conventional gene-level analysis tools are not fully applicable to APA data, and commonly used unsupervised dimensionality reduction methods often disregard experimentally derived annotations such as cell type identities. Here, we proposed a supervised analytical framework termed spvAPA, specifically used for APA analysis from both single-cell and spatial transcriptomics data. First, an iterative imputation method based on weighted nearest neighbor was designed to recover missing APA signatures, by integrating both gene expression and APA modalities. Second, a supervised feature selection method based on sparse partial least squares discriminant analysis was devised to identify APA features distinguishing cell types or spatial morphologies. Additionally, spvAPA improves the visualization of high-dimensional data for discovering novel cell subtypes, which considers APA features and dual modalities of gene expression and APA. Evaluations across nine single-cell and spatial transcriptomics datasets demonstrate the effectiveness and applicability of spvAPA. spvAPA is available at https://github.com/BMILAB/spvAPA.

摘要

可变聚腺苷酸化(APA)是转录组多样性的一个重要驱动因素,它能产生具有不同3'端的信使核糖核酸异构体。单细胞和空间转录组技术的迅速发展为探索APA数据以发现传统基因表达分析中不可见的隐藏细胞亚群提供了新机会。然而,传统的基因水平分析工具并不完全适用于APA数据,常用的无监督降维方法往往忽略了诸如细胞类型身份等实验得出的注释。在此,我们提出了一个名为spvAPA的监督分析框架,专门用于对单细胞和空间转录组数据进行APA分析。首先,设计了一种基于加权最近邻的迭代插补方法,通过整合基因表达和APA模式来恢复缺失的APA特征。其次,设计了一种基于稀疏偏最小二乘判别分析的监督特征选择方法,以识别区分细胞类型或空间形态的APA特征。此外,spvAPA改进了高维数据的可视化以发现新的细胞亚型,该方法考虑了APA特征以及基因表达和APA的双重模式。对九个单细胞和空间转录组数据集的评估证明了spvAPA的有效性和适用性。可在https://github.com/BMILAB/spvAPA获取spvAPA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fa6/11724721/d187a585da9e/bbae720f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验