School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China.
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
Nat Commun. 2024 Jan 18;15(1):600. doi: 10.1038/s41467-024-44835-w.
Computational methods have been proposed to leverage spatially resolved transcriptomic data, pinpointing genes with spatial expression patterns and delineating tissue domains. However, existing approaches fall short in uniformly quantifying spatially variable genes (SVGs). Moreover, from a methodological viewpoint, while SVGs are naturally associated with depicting spatial domains, they are technically dissociated in most methods. Here, we present a framework (PROST) for the quantitative recognition of spatial transcriptomic patterns, consisting of (i) quantitatively characterizing spatial variations in gene expression patterns through the PROST Index; and (ii) unsupervised clustering of spatial domains via a self-attention mechanism. We demonstrate that PROST performs superior SVG identification and domain segmentation with various spatial resolutions, from multicellular to cellular levels. Importantly, PROST Index can be applied to prioritize spatial expression variations, facilitating the exploration of biological insights. Together, our study provides a flexible and robust framework for analyzing diverse spatial transcriptomic data.
已经提出了计算方法来利用空间分辨转录组数据,精确定位具有空间表达模式的基因,并描绘组织域。然而,现有的方法在统一量化空间变异基因(SVGs)方面存在不足。此外,从方法学的角度来看,虽然 SVGs 自然与描绘空间域相关,但在大多数方法中,它们在技术上是分离的。在这里,我们提出了一个用于定量识别空间转录组模式的框架(PROST),包括(i)通过 PROST 指数定量表征基因表达模式的空间变化;(ii)通过自注意力机制对空间域进行无监督聚类。我们证明,PROST 在各种空间分辨率下(从多细胞到单细胞水平)都能更好地识别 SVG 和分割域。重要的是,PROST 指数可用于优先考虑空间表达变化,从而促进对生物学见解的探索。总之,我们的研究为分析各种空间转录组数据提供了一个灵活而强大的框架。