Suppr超能文献

基于先验的自注意力框架的空间转录组学潜在特征提取。

Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics.

机构信息

Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China.

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

出版信息

Genome Res. 2023 Oct;33(10):1757-1773. doi: 10.1101/gr.277891.123. Epub 2023 Oct 30.

Abstract

Rapid advances in spatial transcriptomics (ST) have revolutionized the interrogation of spatial heterogeneity and increase the demand for comprehensive methods to effectively characterize spatial domains. As a prerequisite for ST data analysis, spatial domain characterization is a crucial step for downstream analyses and biological implications. Here we propose a prior-based self-attention framework for spatial transcriptomics (PAST), a variational graph convolutional autoencoder for ST, which effectively integrates prior information via a Bayesian neural network, captures spatial patterns via a self-attention mechanism, and enables scalable application via a ripple walk sampler strategy. Through comprehensive experiments on data sets generated by different technologies, we show that PAST can effectively characterize spatial domains and facilitate various downstream analyses, including ST visualization, spatial trajectory inference and pseudotime analysis. Also, we highlight the advantages of PAST for multislice joint embedding and automatic annotation of spatial domains in newly sequenced ST data. Compared with existing methods, PAST is the first ST method that integrates reference data to analyze ST data. We anticipate that PAST will open up new avenues for researchers to decipher ST data with customized reference data, which expands the applicability of ST technology.

摘要

空间转录组学(ST)的快速发展彻底改变了对空间异质性的研究,并增加了对有效刻画空间域的综合方法的需求。作为 ST 数据分析的前提,空间域刻画是下游分析和生物学意义的关键步骤。在这里,我们提出了一种基于先验的空间转录组学(PAST)自注意框架,这是一种用于 ST 的变分图卷积自动编码器,它通过贝叶斯神经网络有效地整合了先验信息,通过自注意机制捕获空间模式,并通过涟漪游走采样器策略实现可扩展的应用。通过对不同技术生成的数据进行全面的实验,我们表明 PAST 可以有效地刻画空间域,并促进各种下游分析,包括 ST 可视化、空间轨迹推断和伪时间分析。此外,我们还强调了 PAST 在新测序的 ST 数据中多切片联合嵌入和空间域自动注释方面的优势。与现有方法相比,PAST 是第一个整合参考数据来分析 ST 数据的 ST 方法。我们预计 PAST 将为研究人员使用定制的参考数据来破译 ST 数据开辟新的途径,从而扩展 ST 技术的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b0/10691543/46d4a77eb470/1757f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验