Suppr超能文献

基于模拟的农村卫生系统新生儿复苏准备情况临床系统测试识别出常见的潜在安全威胁。

Simulation-Based Clinical System Testing of Neonatal Resuscitation Readiness Across a Rural Health System Identifies Common Latent Safety Threats.

作者信息

Holmes Jeffrey, Chipman Micheline, Gray Beth, Pollick Timothy, Piro Samantha, Seften Leah, Craig Alexa, Zanno Allison, Melendi Misty, Mallory Leah

出版信息

Jt Comm J Qual Patient Saf. 2025 Mar;51(3):199-210. doi: 10.1016/j.jcjq.2024.11.009. Epub 2024 Nov 28.

Abstract

BACKGROUND

Simulation offers an opportunity to practice neonatal resuscitation and test clinical systems to improve safety. The authors used simulation-based clinical systems testing (SbCST) with a Healthcare Failure Mode and Effect Analysis (HFMEA) rubric to categorize and quantify latent safety threats (LSTs) during in situ training in eight rural delivery hospitals. The research team hypothesized that most LSTs would be common across hospitals. LST themes were identified across sites.

METHODS

Between May 2019 and May 2023, the neonatal simulation team conducted half-day training sessions including a total of 177 interprofessional delivery room team members. Teams participated in skills stations, followed by in situ simulations with facilitated debriefs. Facilitators included neonatologists and simulation faculty trained in HFMEA. HFMEA rubrics were completed for each site with mitigation strategies captured on follow-up. LSTs were compared across sites.

RESULTS

A total of 67 distinct LSTs were identified. Forty-one of 67 (61.2%) were shared by more than one hospital, and 26 (38.8%) were unique to individual hospitals. LSTs were distributed across five systems categories and three teams categories. The 4 LSTs detected at 75% or more of hospitals were lack of clear newborn blood transfusion protocols, inconsistent use of closed-loop communication, inconsistent processes for accessing additional resources, and inconsistent use of a recorder.

CONCLUSION

Use of SbCST across a health system allows for comparison of LSTs at each site and identification of common opportunities to mitigate safety threats. Systemwide analysis provides leaders with data needed to guide resource allocation to track and ensure effective implementation of solutions for prioritized LSTs. Identification of themes may allow other hospitals that have not participated in simulation testing to engage in prospective readiness efforts.

摘要

背景

模拟为新生儿复苏实践和测试临床系统以提高安全性提供了机会。作者使用基于模拟的临床系统测试(SbCST)和医疗失效模式与效应分析(HFMEA)评分标准,对八家农村分娩医院的现场培训期间的潜在安全威胁(LST)进行分类和量化。研究团队假设大多数LST在各医院中是常见的。跨地点确定了LST主题。

方法

2019年5月至2023年5月期间,新生儿模拟团队开展了为期半天的培训课程,共有177名跨专业产房团队成员参加。各团队参加技能站培训,随后进行现场模拟并进行引导式总结汇报。引导人员包括接受过HFMEA培训的新生儿科医生和模拟教员。为每个地点完成HFMEA评分标准,并在后续跟进中记录缓解策略。对各地点的LST进行比较。

结果

共识别出67种不同的LST。67种中的41种(61.2%)为多家医院共有,26种(38.8%)为个别医院所独有。LST分布在五个系统类别和三个团队类别中。在75%或更多医院中检测到的4种LST为缺乏明确的新生儿输血方案、闭环沟通使用不一致(不连贯)、获取额外资源的流程不一致以及记录器使用不一致。

结论

在整个卫生系统中使用SbCST可以比较每个地点的LST,并识别减轻安全威胁的共同机会。全系统分析为领导者提供了指导资源分配所需的数据,以跟踪并确保有效实施针对优先LST的解决方案。主题的识别可能使未参与模拟测试的其他医院能够开展前瞻性准备工作。

相似文献

3
Nasal interfaces for neonatal resuscitation.新生儿复苏的鼻接口。
Cochrane Database Syst Rev. 2023 Oct 3;10(10):CD009102. doi: 10.1002/14651858.CD009102.pub2.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验