Suppr超能文献

整合RNA测序分析和机器学习确定了透明细胞肾细胞癌中与代谢相关的预后特征。

Integrated RNA sequencing analysis and machine learning identifies a metabolism-related prognostic signature in clear cell renal cell carcinoma.

作者信息

Liu Yunxun, Yan Zhiwei, Liu Cheng, Yang Rui, Zheng Qingyuan, Jian Jun, Wang Minghui, Wang Lei, Weng Xiaodong, Chen Zhiyuan, Liu Xiuheng

机构信息

Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.

Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.

出版信息

Sci Rep. 2025 Jan 11;15(1):1691. doi: 10.1038/s41598-025-85618-7.

Abstract

The connection between metabolic reprogramming and tumor progression has been demonstrated in an increasing number of researches. However, further research is required to identify how metabolic reprogramming affects interpatient heterogeneity and prognosis in clear cell renal cell carcinoma (ccRCC). In this work, single-cell RNA sequencing (scRNA-seq) based deconvolution was utilized to create a malignant cell hierarchy with metabolic differences and to investigate the relationship between metabolic biomarkers and prognosis. Simultaneously, we created a machine learning-based approach for creating metabolism-related prognostic signature (MRPS). Gamma-glutamyltransferase 6 (GGT6) was further explored for deep biological insights through in vitro experiments. Compared to 51 published signatures and conventional clinical features, MRPS showed substantially higher accuracy. Meanwhile, high MRPS-risk samples demonstrated an immunosuppressive phenotype with more infiltrations of regulatory T cell (Treg) and tumour-associated macrophage (TAM). Following the administration of immune checkpoint inhibitors (ICIs), MRPS showed consistent and strong performance and was an independent risk factor for overall survival. GGT6, an essential metabolic indicator and component of MRPS, has been proven to support proliferation and invasion in ccRCC. MRPS has the potential to be a highly effective tool in improving the clinical results of patients with ccRCC.

摘要

越来越多的研究证实了代谢重编程与肿瘤进展之间的联系。然而,仍需要进一步研究来确定代谢重编程如何影响透明细胞肾细胞癌(ccRCC)患者间的异质性和预后。在这项研究中,我们利用基于单细胞RNA测序(scRNA-seq)的反卷积方法构建了具有代谢差异的恶性细胞层次结构,并研究了代谢生物标志物与预后之间的关系。同时,我们创建了一种基于机器学习的方法来构建与代谢相关的预后特征(MRPS)。通过体外实验进一步探究了γ-谷氨酰转移酶6(GGT6),以获得更深入的生物学见解。与51个已发表的特征和传统临床特征相比,MRPS显示出更高的准确性。同时,高MRPS风险样本表现出免疫抑制表型,调节性T细胞(Treg)和肿瘤相关巨噬细胞(TAM)浸润更多。在使用免疫检查点抑制剂(ICI)后,MRPS表现出一致且强大的性能,并且是总生存的独立危险因素。GGT6是MRPS的重要代谢指标和组成部分,已被证明可支持ccRCC的增殖和侵袭。MRPS有可能成为改善ccRCC患者临床疗效的高效工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验