Xiang Anthony, Hou Wei, Rashidian Sina, Rosenthal Richard N, Abell-Hart Kayley, Zhao Xia, Wang Fusheng
Stony Brook University, Stony Brook, NY, United States.
Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States.
JMIR Public Health Surveill. 2021 Apr 21;7(4):e23426. doi: 10.2196/23426.
Opioid overdose-related deaths have increased dramatically in recent years. Combating the opioid epidemic requires better understanding of the epidemiology of opioid poisoning (OP) and opioid use disorder (OUD).
We aimed to discover geospatial patterns in nonmedical opioid use and its correlations with demographic features related to despair and economic hardship, most notably the US presidential voting patterns in 2016 at census tract level in New York State.
This cross-sectional analysis used data from New York Statewide Planning and Research Cooperative System claims data and the presidential voting results of 2016 in New York State from the Harvard Election Data Archive. We included 63,958 patients who had at least one OUD diagnosis between 2010 and 2016 and 36,004 patients with at least one OP diagnosis between 2012 and 2016. Geospatial mappings were created to compare areas of New York in OUD rates and presidential voting patterns. A multiple regression model examines the extent that certain factors explain OUD rate variation.
Several areas shared similar patterns of OUD rates and Republican vote: census tracts in western New York, central New York, and Suffolk County. The correlation between OUD rates and the Republican vote was .38 (P<.001). The regression model with census tract level of demographic and socioeconomic factors explains 30% of the variance in OUD rates, with disability and Republican vote as the most significant predictors.
At the census tract level, OUD rates were positively correlated with Republican support in the 2016 presidential election, disability, unemployment, and unmarried status. Socioeconomic and demographic despair-related features explain a large portion of the association between the Republican vote and OUD. Together, these findings underscore the importance of socioeconomic interventions in combating the opioid epidemic.
近年来,与阿片类药物过量相关的死亡人数急剧增加。应对阿片类药物流行需要更好地了解阿片类药物中毒(OP)和阿片类药物使用障碍(OUD)的流行病学情况。
我们旨在发现非医疗用途阿片类药物使用的地理空间模式及其与绝望和经济困难相关的人口特征之间的相关性,最显著的是纽约州人口普查区层面2016年美国总统选举投票模式。
这项横断面分析使用了来自纽约州全州规划与研究合作系统的索赔数据以及来自哈佛选举数据存档的2016年纽约州总统选举投票结果。我们纳入了63958名在2010年至2016年间至少有一次OUD诊断的患者以及36004名在2012年至2016年间至少有一次OP诊断的患者。创建地理空间映射以比较纽约州OUD率和总统选举投票模式的区域。多元回归模型检验某些因素解释OUD率变化的程度。
几个地区的OUD率和共和党选票模式相似:纽约州西部、纽约州中部和萨福克县的人口普查区。OUD率与共和党选票之间的相关性为0.38(P<0.001)。包含人口和社会经济因素普查区层面的回归模型解释了OUD率方差的30%,残疾和共和党选票是最显著的预测因素。
在人口普查区层面,OUD率与2016年总统选举中的共和党支持率、残疾、失业和未婚状况呈正相关。社会经济和与人口绝望相关的特征解释了共和党选票与OUD之间关联的很大一部分。这些发现共同强调了社会经济干预在应对阿片类药物流行中的重要性。