Luo Xiaoxiao, Liu Dongyang, Li Cuicui, Liao Jia, Lv Wuyang, Wang Yuchen, Diao Ruxue, Jin Yingyu
First Affiliated Hospital of Harbin Medical University, Harbin, China.
Eur J Med Res. 2025 Jan 13;30(1):25. doi: 10.1186/s40001-024-02269-6.
BACKGROUND/OBJECTIVES: Sepsis-related acute kidney injury (SA-AKI) is a severe condition characterized by high mortality rates. The utility of the sCAR (secrum creatinine/albumin) and LAR (Lactate dehydrogenase/albumin) as diagnostic markers for persistent severe SA-AKI remains unclear.
We acquired training set data from the MIMIC-IV database and validation set data from the First Affiliated Hospital of Harbin Medical University. Logistic regression analysis was used to identify key predictors of persistent severe SA-AKI, considering factors such as sCAR, LAR, PAR (Platelet/albumin), BAR (BUN/albumin), and LAO (Lactic/albumin). Independent predictors, sCAR and LAR, were combined into a composite Log(sCAR)_Log(LAR) score, denoted as the Log(sCAR)_Log(LAR) score. Possible confounding factors were screened out by univariate logistic regression, and multivariable logistic regression was applied to evaluate the association of Log (sCAR) _Log (LAR) score with persistent severe sepsis and other secondary clinical outcomes. The ROC curve was utilized to obtain the best cutoff value of the Log(sCAR)_Log(LAR) score. The Kaplan-Meier curve was used to evaluate the prognosis predictive ability of the risk model.
Logistic regression analysis indicated that sCAR and LAR independently predicted persistent severe SA-AKI. This led to the creation of Log(sCAR)_Log(LAR) score on the base of logarithms of sCAR and LAR. ROC curve analysis showed that the Log(sCAR)_Log(LAR) score was more effective in predicting persistent severe SA-AKI (AUC = 0.71) than Log(sCAR) (AUC = 0.69), Log(LAR) (AUC = 0.65), SOFA score (AUC = 0.66) and Δ Scr (AUC = 0.70). Multivariate regression identified that the SOFA score, PT, ΔScr, Tbil, chronic liver disease, and Vasopressor use as independent risk factors for persistent severe SA-AKI (P < 0.05). A basic clinical prediction model was created using these variables, and its predictive ability, recognition capability, and clinical utility improved with the inclusion of the Log(sCAR)_Log(LAR) score. The model's predictive ability for secondary outcomes, such as renal replacement therapy (RRT), also improved with the addition of the Log(sCAR)_Log(LAR) score. The sensitivity analysis further corroborated the stability of the Log(sCAR)_Log(LAR) score in predicting persistent severe SA-AKI and secondary outcomes, such as RRT.
The Log(sCAR)_Log(LAR) score effectively predicted persistent severe SA-AKI, potentially aiding intensive care physicians in risk assessment.
背景/目的:脓毒症相关急性肾损伤(SA-AKI)是一种死亡率很高的严重病症。血清肌酐/白蛋白比值(sCAR)和乳酸脱氢酶/白蛋白比值(LAR)作为持续性严重SA-AKI诊断标志物的效用仍不明确。
我们从MIMIC-IV数据库获取训练集数据,并从哈尔滨医科大学附属第一医院获取验证集数据。采用逻辑回归分析来确定持续性严重SA-AKI的关键预测因素,考虑因素包括sCAR、LAR、血小板/白蛋白比值(PAR)、血尿素氮/白蛋白比值(BAR)和乳酸/白蛋白比值(LAO)。将独立预测因素sCAR和LAR合并为一个复合的Log(sCAR)_Log(LAR)评分,记为Log(sCAR)_Log(LAR)评分。通过单因素逻辑回归筛选出可能的混杂因素,并应用多因素逻辑回归来评估Log(sCAR)_Log(LAR)评分与持续性严重脓毒症及其他次要临床结局之间的关联。利用ROC曲线获取Log(sCAR)_Log(LAR)评分的最佳截断值。采用Kaplan-Meier曲线评估风险模型的预后预测能力。
逻辑回归分析表明,sCAR和LAR独立预测持续性严重SA-AKI。在此基础上,基于sCAR和LAR的对数创建了Log(sCAR)_Log(LAR)评分。ROC曲线分析显示,Log(sCAR)_Log(LAR)评分在预测持续性严重SA-AKI方面(AUC = 0.71)比Log(sCAR)(AUC = 0.69)、Log(LAR)(AUC = 0.65)、序贯器官衰竭评估(SOFA)评分(AUC = 0.66)和肌酐变化量(ΔScr)(AUC = 0.70)更有效。多因素回归确定SOFA评分、凝血酶原时间(PT)、ΔScr、总胆红素(Tbil)、慢性肝病和血管升压药的使用是持续性严重SA-AKI的独立危险因素(P < 0.05)。使用这些变量创建了一个基本的临床预测模型,并且随着Log(sCAR)_Log(LAR)评分的纳入,其预测能力、识别能力和临床效用均得到提高。该模型对诸如肾脏替代治疗(RRT)等次要结局的预测能力也随着Log(sCAR)_Log(LAR)评分的加入而提高。敏感性分析进一步证实了Log(sCAR)_Log(LAR)评分在预测持续性严重SA-AKI和诸如RRT等次要结局方面的稳定性。
Log(sCAR)_Log(LAR)评分有效地预测了持续性严重SA-AKI,可能有助于重症监护医生进行风险评估。