Suppr超能文献

血清肌酐与白蛋白比值(sCAR)和乳酸脱氢酶与白蛋白比值(LAR)在脓毒症相关持续性严重急性肾损伤中的预测价值

The predictive value of the serum creatinine-to-albumin ratio (sCAR) and lactate dehydrogenase-to-albumin ratio (LAR) in sepsis-related persistent severe acute kidney injury.

作者信息

Luo Xiaoxiao, Liu Dongyang, Li Cuicui, Liao Jia, Lv Wuyang, Wang Yuchen, Diao Ruxue, Jin Yingyu

机构信息

First Affiliated Hospital of Harbin Medical University, Harbin, China.

出版信息

Eur J Med Res. 2025 Jan 13;30(1):25. doi: 10.1186/s40001-024-02269-6.

Abstract

BACKGROUND/OBJECTIVES: Sepsis-related acute kidney injury (SA-AKI) is a severe condition characterized by high mortality rates. The utility of the sCAR (secrum creatinine/albumin) and LAR (Lactate dehydrogenase/albumin) as diagnostic markers for persistent severe SA-AKI remains unclear.

METHODS

We acquired training set data from the MIMIC-IV database and validation set data from the First Affiliated Hospital of Harbin Medical University. Logistic regression analysis was used to identify key predictors of persistent severe SA-AKI, considering factors such as sCAR, LAR, PAR (Platelet/albumin), BAR (BUN/albumin), and LAO (Lactic/albumin). Independent predictors, sCAR and LAR, were combined into a composite Log(sCAR)_Log(LAR) score, denoted as the Log(sCAR)_Log(LAR) score. Possible confounding factors were screened out by univariate logistic regression, and multivariable logistic regression was applied to evaluate the association of Log (sCAR) _Log (LAR) score with persistent severe sepsis and other secondary clinical outcomes. The ROC curve was utilized to obtain the best cutoff value of the Log(sCAR)_Log(LAR) score. The Kaplan-Meier curve was used to evaluate the prognosis predictive ability of the risk model.

RESULTS

Logistic regression analysis indicated that sCAR and LAR independently predicted persistent severe SA-AKI. This led to the creation of Log(sCAR)_Log(LAR) score on the base of logarithms of sCAR and LAR. ROC curve analysis showed that the Log(sCAR)_Log(LAR) score was more effective in predicting persistent severe SA-AKI (AUC = 0.71) than Log(sCAR) (AUC = 0.69), Log(LAR) (AUC = 0.65), SOFA score (AUC = 0.66) and Δ Scr (AUC = 0.70). Multivariate regression identified that the SOFA score, PT, ΔScr, Tbil, chronic liver disease, and Vasopressor use as independent risk factors for persistent severe SA-AKI (P < 0.05). A basic clinical prediction model was created using these variables, and its predictive ability, recognition capability, and clinical utility improved with the inclusion of the Log(sCAR)_Log(LAR) score. The model's predictive ability for secondary outcomes, such as renal replacement therapy (RRT), also improved with the addition of the Log(sCAR)_Log(LAR) score. The sensitivity analysis further corroborated the stability of the Log(sCAR)_Log(LAR) score in predicting persistent severe SA-AKI and secondary outcomes, such as RRT.

CONCLUSIONS

The Log(sCAR)_Log(LAR) score effectively predicted persistent severe SA-AKI, potentially aiding intensive care physicians in risk assessment.

摘要

背景/目的:脓毒症相关急性肾损伤(SA-AKI)是一种死亡率很高的严重病症。血清肌酐/白蛋白比值(sCAR)和乳酸脱氢酶/白蛋白比值(LAR)作为持续性严重SA-AKI诊断标志物的效用仍不明确。

方法

我们从MIMIC-IV数据库获取训练集数据,并从哈尔滨医科大学附属第一医院获取验证集数据。采用逻辑回归分析来确定持续性严重SA-AKI的关键预测因素,考虑因素包括sCAR、LAR、血小板/白蛋白比值(PAR)、血尿素氮/白蛋白比值(BAR)和乳酸/白蛋白比值(LAO)。将独立预测因素sCAR和LAR合并为一个复合的Log(sCAR)_Log(LAR)评分,记为Log(sCAR)_Log(LAR)评分。通过单因素逻辑回归筛选出可能的混杂因素,并应用多因素逻辑回归来评估Log(sCAR)_Log(LAR)评分与持续性严重脓毒症及其他次要临床结局之间的关联。利用ROC曲线获取Log(sCAR)_Log(LAR)评分的最佳截断值。采用Kaplan-Meier曲线评估风险模型的预后预测能力。

结果

逻辑回归分析表明,sCAR和LAR独立预测持续性严重SA-AKI。在此基础上,基于sCAR和LAR的对数创建了Log(sCAR)_Log(LAR)评分。ROC曲线分析显示,Log(sCAR)_Log(LAR)评分在预测持续性严重SA-AKI方面(AUC = 0.71)比Log(sCAR)(AUC = 0.69)、Log(LAR)(AUC = 0.65)、序贯器官衰竭评估(SOFA)评分(AUC = 0.66)和肌酐变化量(ΔScr)(AUC = 0.70)更有效。多因素回归确定SOFA评分、凝血酶原时间(PT)、ΔScr、总胆红素(Tbil)、慢性肝病和血管升压药的使用是持续性严重SA-AKI的独立危险因素(P < 0.05)。使用这些变量创建了一个基本的临床预测模型,并且随着Log(sCAR)_Log(LAR)评分的纳入,其预测能力、识别能力和临床效用均得到提高。该模型对诸如肾脏替代治疗(RRT)等次要结局的预测能力也随着Log(sCAR)_Log(LAR)评分的加入而提高。敏感性分析进一步证实了Log(sCAR)_Log(LAR)评分在预测持续性严重SA-AKI和诸如RRT等次要结局方面的稳定性。

结论

Log(sCAR)_Log(LAR)评分有效地预测了持续性严重SA-AKI,可能有助于重症监护医生进行风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/930c/11727627/7a0d9245287c/40001_2024_2269_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验