Suppr超能文献

利用气体聚集源制备多孔热致变色VO纳米颗粒薄膜的新技术。

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

作者信息

Prokeš Jan, Košutová Tereza, Kousal Jaroslav, Kuzminova Anna, Kylián Ondřej

机构信息

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague, Czech Republic.

出版信息

Sci Rep. 2025 Jan 12;15(1):1755. doi: 10.1038/s41598-025-86272-9.

Abstract

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films. This technique combines a gas-phase synthesis of vanadium nanoparticles and their subsequent atmospheric pressure thermal oxidation. It is shown that the thermochromic behaviour of such produced nanomaterial is at the fixed oxidation temperature strongly dependent on the oxidation time. Concerning this, it was found that there exists an optimal oxidation time (60 s in our study) that assures the production of crystalline VO nanoparticles with the highest, reproducible and temporally stable semiconductor-to-metal transition with the resistive switching ratio close to 2 orders of magnitude and dramatic switching of optical properties in the near infra-red spectral region.

摘要

二氧化钒(VO₂)是一种相变材料,在约68°C的温度下会发生从半导体到金属的转变。这一非凡特性引发了对VO₂可控合成的深入研究。在本研究中,我们介绍并研究了一种无需连接剂和溶剂的原创策略,可用于制备基于高孔隙率VO₂纳米颗粒的薄膜。该技术将钒纳米颗粒的气相合成及其随后的常压热氧化相结合。结果表明,在固定氧化温度下,这种制备的纳米材料的热致变色行为强烈依赖于氧化时间。关于此,发现存在一个最佳氧化时间(在我们的研究中为60秒),可确保制备出具有最高、可重现且时间稳定的半导体到金属转变的结晶VO₂纳米颗粒,其电阻开关比接近2个数量级,并且在近红外光谱区域光学性质发生显著变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/11725582/d395ae61da9d/41598_2025_86272_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验