He Shan, Barón Ander, Munteanu Cristian R, de Bilbao Begoña, Casañola-Martin Gerardo M, Chelu Mariana, Musuc Adina Magdalena, Bediaga Harbil, Ascencio Estefania, Castellanos-Rubio Idoia, Arrasate Sonia, Pazos Alejandro, Insausti Maite, Rasulev Bakhtiyor, González-Díaz Humberto
Department of Coatings and Polymer Materials, North Dakota State University, Fargo, North Dakota 58102, United States.
Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Greater Bilbao, Basque Country, Spain.
ACS Appl Mater Interfaces. 2025 Jan 22;17(3):5290-5306. doi: 10.1021/acsami.4c16800. Epub 2025 Jan 12.
Magnetic nanoparticles (NPs) are gaining significant interest in the field of biomedical functional nanomaterials because of their distinctive chemical and physical characteristics, particularly in drug delivery and magnetic hyperthermia applications. In this paper, we experimentally synthesized and characterized new FeO-based NPs, functionalizing its surface with a 5-TAMRA cadaverine modified copolymer consisting of PMAO and PEG. Despite these advancements, many combinations of NP cores and coatings remain unexplored. To address this, we created a new data set of NP systems from public sources. Herein, 11 different AI/ML algorithms were used to develop the predictive AI/ML models. The linear discriminant analysis (LDA) and random forest (RF) models showed high values of sensitivity and specificity (>0.9) in training/validation series and 3-fold cross validation, respectively. The AI/ML models are able to predict 14 output properties (CC (μM), EC (μM), inhibition (%), .) for all combinations of 54 different NP cores classes vs. 25 different coats and vs. 41 different cell lines, allowing the short listing of the best results for experimental assays. The results of this work may help to reduce the cost of traditional trial and error procedures.
磁性纳米颗粒(NPs)因其独特的化学和物理特性,在生物医学功能纳米材料领域引起了广泛关注,尤其是在药物递送和磁热疗应用方面。在本文中,我们通过实验合成并表征了新型的基于FeO的纳米颗粒,并用由PMAO和PEG组成的5-TAMRA尸胺修饰共聚物对其表面进行功能化处理。尽管取得了这些进展,但纳米颗粒核心和涂层的许多组合仍未被探索。为了解决这个问题,我们从公共来源创建了一个新的纳米颗粒系统数据集。在此,使用了11种不同的人工智能/机器学习算法来开发预测性人工智能/机器学习模型。线性判别分析(LDA)和随机森林(RF)模型在训练/验证系列和3折交叉验证中分别显示出高灵敏度和特异性值(>0.9)。人工智能/机器学习模型能够预测54种不同纳米颗粒核心类别与25种不同涂层以及与41种不同细胞系的所有组合的14种输出特性(CC(μM)、EC(μM)、抑制率(%)等),从而为实验分析筛选出最佳结果。这项工作的结果可能有助于降低传统试错程序的成本。