Gao Ming, Liu Qing, Zhang Lingyu, Tabak Fatema, Hua Yifei, Shao Wei, Li Yangyang, Qian Li, Liu Yu
Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
PeerJ. 2025 Jan 9;13:e18660. doi: 10.7717/peerj.18660. eCollection 2025.
In this study, we aimed to study the role of extracellular proteins as biomarkers associated with newly diagnosed Type 1 diabetes (NT1D) diagnosis and prognosis.
We retrieved and analyzed the GSE55098 microarray dataset from the Gene Expression Omnibus (GEO) database. Using R software, we screened out the extracellular protein-differentially expressed genes (EP-DEGs) through several protein-related databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied to describe the role and function of these EP-DEGs. We used the STRING database to construct the interaction of proteins, Cytoscape software to visualize the protein-protein interaction (PPI) networks, and its plugin CytoHubba to identify the crucial genes between PPI networks. Finally, we used the comparative toxicogenomics database (CTD) to evaluate the connection between NT1D with the potential crucial genes and we validated our conclusions with another dataset (GSE33440) and some clinical samples.
We identified 422 DEGs and 122 EP-DEGs from a dataset that includes (12) NT1D patients compared with (10) healthy people. Protein digestion and absorption, toll-like receptor signaling, and T cell receptor signaling were the most meaningful pathways defined by KEGG enrichment analyses. We recognized nine important extracellular genes: , and . CTD analyses showed that , and had higher levels in NT1D and hypoglycemia; while and increased in hyperglycemia. Further verification showed that LCN2, MMP9, TNF and IFNG were elevated in NT1D patients.
The nine identified key extracellular genes, particularly , and , may be potential diagnostic biomarkers for NT1D. Our findings provide new insights into the molecular mechanisms and novel therapeutic targets of NT1D.
在本研究中,我们旨在研究细胞外蛋白作为与新诊断的1型糖尿病(NT1D)诊断和预后相关的生物标志物的作用。
我们从基因表达综合数据库(GEO)中检索并分析了GSE55098芯片数据集。使用R软件,我们通过几个与蛋白质相关的数据库筛选出细胞外蛋白差异表达基因(EP-DEGs)。应用基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析来描述这些EP-DEGs的作用和功能。我们使用STRING数据库构建蛋白质相互作用,Cytoscape软件可视化蛋白质-蛋白质相互作用(PPI)网络,并使用其插件CytoHubba识别PPI网络中的关键基因。最后,我们使用比较毒理基因组学数据库(CTD)评估NT1D与潜在关键基因之间的联系,并使用另一个数据集(GSE33440)和一些临床样本验证我们的结论。
我们从一个包含12例NT1D患者与10例健康人的数据集中鉴定出422个差异表达基因(DEGs)和122个EP-DEGs。蛋白质消化与吸收、Toll样受体信号传导和T细胞受体信号传导是KEGG富集分析确定的最有意义的途径。我们识别出9个重要的细胞外基因:……。CTD分析表明,……在NT1D和低血糖中水平较高;而……在高血糖中升高。进一步验证表明,NT1D患者中LCN2、MMP9、TNF和IFNG升高。
鉴定出的9个关键细胞外基因,特别是……,可能是NT1D的潜在诊断生物标志物。我们的发现为NT1D的分子机制和新的治疗靶点提供了新的见解。