Long Zuhuan, Gao Yu, Zhang Yaojun, Ma Weili, Zheng Jiqi, Liu Yuxin, Ding Fu, Sun Yaguang, Xu Zhenhe
College of Environment and Chemical Engineering, Dalian University Dalian 116622 Liaoning P. R. China
Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
RSC Adv. 2025 Jan 9;15(2):764-776. doi: 10.1039/d4ra07018f.
Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range. Notably, by optimizing the amount of Au loaded, excellent methyl orange (MO) degradation rates of 0.068 min under UV light and 0.423 h under light excitation with > 420 nm can be achieved. Even under low-energy NIR light ( > 800 nm), a degradation rate of 0.087 h was reached, indicating a significantly enhanced degradation effect compared to YF@CN without Au loading. The high performance of the core-shell composite is attributed to its unique structure, which enables efficient transfer of energy and charge carriers, thereby promoting charge separation and suppressing recombination. Furthermore, this article reveals and discusses three distinct photocatalytic mechanisms under UV, visible, and NIR light. This study underscores the considerable promise of core-shell composites in developing efficient g-CN-based broadband photocatalysts, focusing on comprehensive utilization of the solar spectrum through the synergistic effects of plasma and upconversion materials.
光催化技术因其能够利用丰富的太阳能且无需额外化学试剂来去除有机染料污染物而备受关注。在此背景下,采用水热法合成了掺杂镱、铒、铥的氟化钇(YF)纳米球,随后在其表面包覆一层吸附有金纳米颗粒(NPs)的石墨相氮化碳(g-CN),形成核壳结构,命名为YF:Yb,Er,Tm@CN-Au(简称为YF@CN-Au)。这种核壳复合材料在紫外(UV)到近红外(NIR)光谱范围内表现出卓越的稳定性、宽带吸收和出色的光催化活性。值得注意的是,通过优化金的负载量,在紫外光下甲基橙(MO)的降解速率可达0.068 min⁻¹,在波长大于420 nm的光激发下为0.423 h⁻¹。即使在低能量近红外光(波长大于800 nm)下,降解速率也能达到0.087 h⁻¹,这表明与未负载金的YF@CN相比,降解效果显著增强。核壳复合材料的高性能归因于其独特的结构,该结构能够实现能量和电荷载流子的高效转移,从而促进电荷分离并抑制复合。此外,本文揭示并讨论了在紫外光、可见光和近红外光下三种不同的光催化机制。这项研究强调了核壳复合材料在开发高效的基于g-CN的宽带光催化剂方面具有巨大潜力,重点在于通过等离子体和上转换材料的协同效应实现太阳光谱的综合利用。