Liu Yannan, Chen Chuanshuang, Valdez Jesus, Motta Meira Debora, He Wanting, Wang Yong, Harnagea Catalin, Lu Qiongqiong, Guner Tugrul, Wang Hao, Liu Cheng-Hao, Zhang Qingzhe, Huang Shengyun, Yurtsever Aycan, Chaker Mohamed, Ma Dongling
Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS), Varennes, QC, Canada.
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, PR China.
Nat Commun. 2021 Feb 23;12(1):1231. doi: 10.1038/s41467-021-21401-2.
Conversion of clean solar energy to chemical fuels is one of the promising and up-and-coming applications of metal-organic frameworks. However, fast recombination of photogenerated charge carriers in these frameworks remains the most significant limitation for their photocatalytic application. Although the construction of homojunctions is a promising solution, it remains very challenging to synthesize them. Herein, we report a well-defined hierarchical homojunction based on metal-organic frameworks via a facile one-pot synthesis route directed by hollow transition metal nanoparticles. The homojunction is enabled by two concentric stacked nanoplates with slightly different crystal phases. The enhanced charge separation in the homojunction was visualized by in-situ surface photovoltage microscopy. Moreover, the as-prepared nanostacks displayed a visible-light-driven carbon dioxide reduction with very high carbon monooxide selectivity, and excellent stability. Our work provides a powerful platform to synthesize capable metal-organic framework complexes and sheds light on the hierarchical structure-function relationships of metal-organic frameworks.
将清洁太阳能转化为化学燃料是金属有机框架颇具前景且新兴的应用之一。然而,这些框架中光生电荷载流子的快速复合仍然是其光催化应用的最主要限制。尽管构建同质结是一种很有前景的解决方案,但合成它们仍然极具挑战性。在此,我们报道了一种基于金属有机框架的明确分层同质结,通过由中空过渡金属纳米粒子引导的简便一锅合成路线制备而成。该同质结由两个具有略微不同晶相的同心堆叠纳米板构成。通过原位表面光电压显微镜观察到了同质结中电荷分离的增强。此外,所制备的纳米堆叠在可见光驱动下表现出非常高的一氧化碳选择性和优异的稳定性的二氧化碳还原性能。我们的工作为合成高性能金属有机框架配合物提供了一个强大的平台,并揭示了金属有机框架的分层结构 - 功能关系。