Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, Illinois 61801, USA.
J Am Chem Soc. 2012 Oct 31;134(43):18046-52. doi: 10.1021/ja3074819. Epub 2012 Oct 19.
Migrating birds fly thousands of miles or more, often without visual cues and in treacherous winds, yet keep direction. They employ for this purpose, apparently as a powerful navigational tool, the photoreceptor protein cryptochrome to sense the geomagnetic field. The unique biological function of cryptochrome supposedly arises from a photoactivation reaction involving radical pair formation through electron transfer. Radical pairs, indeed, can act as a magnetic compass; however, the cryptochrome photoreaction pathway is not fully resolved yet. To reveal this pathway and underlying photochemical mechanisms, we carried out a combination of quantum chemical calculations and molecular dynamics simulations on plant ( Arabidopsis thaliana ) cryptochrome. The results demonstrate that after photoexcitation a radical pair forms, becomes stabilized through proton transfer, and decays back to the protein's resting state on time scales allowing the protein, in principle, to act as a radical pair-based magnetic sensor. We briefly relate our findings on A. thaliana cryptochrome to photoreaction pathways in animal cryptochromes.
候鸟可以飞行数千英里甚至更远的距离,通常在没有视觉线索和险恶的风中飞行,但它们仍能保持方向。它们显然将感光蛋白隐花色素作为一种强大的导航工具来感知地磁场。隐花色素的独特生物学功能源自涉及通过电子转移形成自由基对的光激活反应。事实上,自由基对可以充当磁罗盘;然而,隐花色素光反应途径尚未完全解析。为了揭示这条途径和潜在的光化学机制,我们对植物(拟南芥)隐花色素进行了量子化学计算和分子动力学模拟的组合。结果表明,光激发后形成自由基对,通过质子转移稳定化,并在允许蛋白质原则上作为基于自由基对的磁传感器发挥作用的时间尺度内回到蛋白质的静止状态。我们简要地将我们在拟南芥隐花色素上的发现与动物隐花色素的光反应途径联系起来。