Yoda Toshiki, Sako Yasushi, Inoue Asuka, Yanagawa Masataka
Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
Biophys Physicobiol. 2024 Sep 20;21(3):e210020. doi: 10.2142/biophysico.bppb-v21.0020. eCollection 2024.
Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques. Here we developed a method for labeling cell-surface GPCRs inspired by the HiBiT system, which utilizes the high affinity complementation between LgBiT and HiBiT fragments of the NanoLuc luciferase. We synthesized four fluorescence-labeled HiBiT peptides (F-FiBiTs) with a different color dye (Setau-488, TMR, SaraFluor 650 and SaraFluor 720). We constructed a multicolor total internal reflection fluorescence microscopy system that allows us to track four color dyes simultaneously. As a proof-of-concept experiment, we labeled an N-terminally LgBiT-fused GPCR (Lg-GPCR) with a mixture of the four F-FiBiTs and successfully tracked each dye within a cell at the single-molecule level. The F-FiBiT-labeled Lg-GPCRs showed agonist-dependent changes in the diffusion dynamics and accumulation into the clathrin-coated pits as observed with a conventional method using a C-terminally HaloTag-fused GPCR. Taking advantage of luciferase complementation by the F-FiBiT and Lg-GPCRs, the F-FiBiT was also applicable to bioluminescence plate-reader-based assays. By combining existing labeling methods such as HaloTag, SNAP-tag, and fluorescent proteins, the F-FiBiT method will be useful for multicolor single-molecule imaging and will enhance our understanding of GPCR signaling at the single-molecule level.
单分子成像可提供有关活细胞中扩散动力学、寡聚化和蛋白质-蛋白质相互作用的信息。为了在单分子水平上同时监测不同类型的蛋白质,需要使用具有不同光稳定性染料的正交荧光标记方法。G蛋白偶联受体(GPCRs)是一类主要的药物靶点,是已使用单分子成像技术进行研究的典型膜受体。在这里,我们开发了一种受HiBiT系统启发的标记细胞表面GPCRs的方法,该系统利用了NanoLuc荧光素酶的LgBiT和HiBiT片段之间的高亲和力互补作用。我们合成了四种带有不同颜色染料(Setau-488、TMR、SaraFluor 650和SaraFluor 720)的荧光标记HiBiT肽(F-FiBiTs)。我们构建了一个多色全内反射荧光显微镜系统,使我们能够同时追踪四种颜色的染料。作为概念验证实验,我们用四种F-FiBiTs的混合物标记了N端融合LgBiT的GPCR(Lg-GPCR),并成功地在单分子水平上追踪了细胞内的每种染料。F-FiBiT标记的Lg-GPCRs在扩散动力学上显示出激动剂依赖性变化,并如使用C端融合HaloTag的GPCR的传统方法所观察到的那样积累到网格蛋白包被小窝中。利用F-FiBiT和Lg-GPCRs之间的荧光素酶互补作用,F-FiBiT也适用于基于生物发光读板器的检测。通过结合现有的标记方法,如HaloTag、SNAP-tag和荧光蛋白,F-FiBiT方法将有助于多色单分子成像,并将增强我们在单分子水平上对GPCR信号传导的理解。