Suppr超能文献

在全切片图像中使用保形不确定性感知人工智能框架实现非小细胞肺癌诊断中的信任

Implementing Trust in Non-Small Cell Lung Cancer Diagnosis with a Conformalized Uncertainty-Aware AI Framework in Whole-Slide Images.

作者信息

Zhang Xiaoge, Wang Tao, Yan Chao, Najdawi Fedaa, Zhou Kai, Ma Yuan, Cheung Yiu-Ming, Malin Bradley A

出版信息

medRxiv. 2024 Dec 30:2024.12.27.24319715. doi: 10.1101/2024.12.27.24319715.

Abstract

Ensuring trustworthiness is fundamental to the development of artificial intelligence (AI) that is considered societally responsible, particularly in cancer diagnostics, where a misdiagnosis can have dire consequences. Current digital pathology AI models lack systematic solutions to address trustworthiness concerns arising from model limitations and data discrepancies between model deployment and development environments. To address this issue, we developed TRUECAM, a framework designed to ensure both data and model trustworthiness in non-small cell lung cancer subtyping with whole-slide images. TRUECAM integrates 1) a spectral-normalized neural Gaussian process for identifying out-of-scope inputs and 2) an ambiguity-guided elimination of tiles to filter out highly ambiguous regions, addressing data trustworthiness, as well as 3) conformal prediction to ensure controlled error rates. We systematically evaluated the framework across multiple large-scale cancer datasets, leveraging both task-specific and foundation models, illustrate that an AI model wrapped with TRUECAM significantly outperforms models that lack such guidance, in terms of classification accuracy, robustness, interpretability, and data efficiency, while also achieving improvements in fairness. These findings highlight TRUECAM as a versatile wrapper framework for digital pathology AI models with diverse architectural designs, promoting their responsible and effective applications in real-world settings.

摘要

确保可信度是被认为具有社会责任感的人工智能(AI)发展的基础,尤其是在癌症诊断中,误诊可能会带来严重后果。当前的数字病理AI模型缺乏系统的解决方案来解决因模型局限性以及模型部署与开发环境之间的数据差异而产生的可信度问题。为了解决这个问题,我们开发了TRUECAM,这是一个旨在通过全切片图像确保非小细胞肺癌亚型分类中数据和模型可信度的框架。TRUECAM集成了1)用于识别超出范围输入的谱归一化神经高斯过程,以及2)用于过滤掉高度模糊区域的模糊性引导切片消除方法,以解决数据可信度问题,此外还集成了3)共形预测以确保控制错误率。我们利用特定任务模型和基础模型,在多个大规模癌症数据集上系统地评估了该框架,结果表明,包装有TRUECAM的AI模型在分类准确性、鲁棒性、可解释性和数据效率方面显著优于缺乏此类指导的模型,同时在公平性方面也有所改进。这些发现突出了TRUECAM作为一个适用于具有不同架构设计的数字病理AI模型的通用包装框架,促进了它们在现实环境中的负责任和有效应用。

相似文献

4
Artificial intelligence in hospital infection prevention: an integrative review.医院感染预防中的人工智能:一项综合综述。
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验