Suppr超能文献

使用深度卷积神经网络增强MRI图像中的神经异常检测

Enhanced neurological anomaly detection in MRI images using deep convolutional neural networks.

作者信息

Buttar Ahmed Mateen, Shaheen Zubair, Gumaei Abdu H, Mosleh Mogeeb A A, Gupta Indrajeet, Alzanin Samah M, Akbar Muhammad Azeem

机构信息

Department of Computer Science, University of Agriculture Faisalabad, Faisalabad, Pakistan.

Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.

出版信息

Front Med (Lausanne). 2024 Dec 27;11:1504545. doi: 10.3389/fmed.2024.1504545. eCollection 2024.

Abstract

INTRODUCTION

Neurodegenerative diseases, including Parkinson's, Alzheimer's, and epilepsy, pose significant diagnostic and treatment challenges due to their complexity and the gradual degeneration of central nervous system structures. This study introduces a deep learning framework designed to automate neuro-diagnostics, addressing the limitations of current manual interpretation methods, which are often time-consuming and prone to variability.

METHODS

We propose a specialized deep convolutional neural network (DCNN) framework aimed at detecting and classifying neurological anomalies in MRI data. Our approach incorporates key preprocessing techniques, such as reducing noise and normalizing image intensity in MRI scans, alongside an optimized model architecture. The model employs Rectified Linear Unit (ReLU) activation functions, the Adam optimizer, and a random search strategy to fine-tune hyper-parameters like learning rate, batch size, and the number of neurons in fully connected layers. To ensure reliability and broad applicability, cross-fold validation was used.

RESULTS AND DISCUSSION

Our DCNN achieved a remarkable classification accuracy of 98.44%, surpassing well-known models such as ResNet-50 and AlexNet when evaluated on a comprehensive MRI dataset. Moreover, performance metrics such as precision, recall, and F1-score were calculated separately, confirming the robustness and efficiency of our model across various evaluation criteria. Statistical analyses, including ANOVA and t-tests, further validated the significance of the performance improvements observed with our proposed method. This model represents an important step toward creating a fully automated system for diagnosing and planning treatment for neurological diseases. The high accuracy of our framework highlights its potential to improve diagnostic workflows by enabling precise detection, tracking disease progression, and supporting personalized treatment strategies. While the results are promising, further research is necessary to assess how the model performs across different clinical scenarios. Future studies could focus on integrating additional data types, such as longitudinal imaging and multimodal techniques, to further enhance diagnostic accuracy and clinical utility. These findings mark a significant advancement in applying deep learning to neuro-diagnostics, with promising implications for improving patient outcomes and clinical practices.

摘要

引言

神经退行性疾病,包括帕金森病、阿尔茨海默病和癫痫,由于其复杂性以及中枢神经系统结构的逐渐退化,给诊断和治疗带来了重大挑战。本研究引入了一个深度学习框架,旨在实现神经诊断自动化,解决当前手动解读方法的局限性,这些方法通常耗时且容易出现差异。

方法

我们提出了一个专门的深度卷积神经网络(DCNN)框架,旨在检测和分类MRI数据中的神经异常。我们的方法结合了关键的预处理技术,如在MRI扫描中减少噪声和归一化图像强度,以及优化的模型架构。该模型采用修正线性单元(ReLU)激活函数、Adam优化器和随机搜索策略来微调超参数,如学习率、批量大小和全连接层中的神经元数量。为确保可靠性和广泛适用性,使用了交叉折叠验证。

结果与讨论

我们的DCNN在一个综合MRI数据集上进行评估时,达到了98.44%的显著分类准确率,超过了诸如ResNet-50和AlexNet等知名模型。此外,还分别计算了精确率、召回率和F1分数等性能指标,证实了我们的模型在各种评估标准下的稳健性和效率。包括方差分析和t检验在内的统计分析进一步验证了我们提出的方法所观察到的性能改进的显著性。该模型代表了朝着创建一个用于诊断和规划神经疾病治疗的全自动系统迈出的重要一步。我们框架的高精度突出了其通过实现精确检测、跟踪疾病进展和支持个性化治疗策略来改善诊断工作流程的潜力。虽然结果很有前景,但有必要进一步研究该模型在不同临床场景中的表现。未来的研究可以专注于整合其他数据类型,如纵向成像和多模态技术,以进一步提高诊断准确性和临床实用性。这些发现标志着在将深度学习应用于神经诊断方面取得了重大进展,对改善患者预后和临床实践具有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfec/11717658/3123fb8392e7/fmed-11-1504545-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验