Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Department of Applied Mathematics, Columbia University, New York, NY, USA.
Sci Rep. 2023 Sep 2;13(1):14433. doi: 10.1038/s41598-023-41359-z.
Schizophrenia is a chronic neuropsychiatric disorder that causes distinct structural alterations within the brain. We hypothesize that deep learning applied to a structural neuroimaging dataset could detect disease-related alteration and improve classification and diagnostic accuracy. We tested this hypothesis using a single, widely available, and conventional T1-weighted MRI scan, from which we extracted the 3D whole-brain structure using standard post-processing methods. A deep learning model was then developed, optimized, and evaluated on three open datasets with T1-weighted MRI scans of patients with schizophrenia. Our proposed model outperformed the benchmark model, which was also trained with structural MR images using a 3D CNN architecture. Our model is capable of almost perfectly (area under the ROC curve = 0.987) distinguishing schizophrenia patients from healthy controls on unseen structural MRI scans. Regional analysis localized subcortical regions and ventricles as the most predictive brain regions. Subcortical structures serve a pivotal role in cognitive, affective, and social functions in humans, and structural abnormalities of these regions have been associated with schizophrenia. Our finding corroborates that schizophrenia is associated with widespread alterations in subcortical brain structure and the subcortical structural information provides prominent features in diagnostic classification. Together, these results further demonstrate the potential of deep learning to improve schizophrenia diagnosis and identify its structural neuroimaging signatures from a single, standard T1-weighted brain MRI.
精神分裂症是一种慢性神经精神障碍,会导致大脑内部出现明显的结构改变。我们假设,将深度学习应用于结构神经影像学数据集,可以检测到与疾病相关的改变,并提高分类和诊断的准确性。我们使用单一、广泛可用且常规的 T1 加权 MRI 扫描来测试这一假设,从该扫描中,我们使用标准的后处理方法提取 3D 全脑结构。然后,我们使用来自精神分裂症患者的 T1 加权 MRI 扫描的三个公开数据集来开发、优化和评估深度学习模型。我们提出的模型优于基准模型,该模型也使用 3D CNN 架构和结构磁共振图像进行了训练。我们的模型能够几乎完美地(ROC 曲线下面积=0.987)区分未见过的结构 MRI 扫描中的精神分裂症患者和健康对照者。区域分析将皮质下区域和脑室定位为最具预测性的大脑区域。皮质下结构在人类的认知、情感和社会功能中起着关键作用,这些区域的结构异常与精神分裂症有关。我们的发现证实了精神分裂症与皮质下脑结构的广泛改变有关,并且皮质下结构信息在诊断分类中提供了显著特征。总之,这些结果进一步证明了深度学习在提高精神分裂症诊断和从单一标准 T1 加权脑 MRI 中识别其结构神经影像学特征方面的潜力。