Brysbaert Marc, Debeer Dries
Faculty of Psychology and Educational Sciences, Ghent University, Belgium.
J Cogn. 2025 Jan 6;8(1):5. doi: 10.5334/joc.409. eCollection 2025.
This tutorial provides guidelines for conducting linear mixed effects (LME) analyses for simple designs, aimed at researchers familiar with t-tests, analysis of variance (ANOVA) and linear regression. First, we compare LME analyses with traditional methods when participants are the only source of random variation. We show that LME analysis is more interesting as soon as you have more than one observation per participant per condition. The second section discusses studies where both participants and stimuli are used as sources of random variation, ensuring robust generalization beyond the specific stimuli tested. In our search for standardized effect sizes, we saw that partial eta squared is even less informative for LME than for ANOVA. We present as an alternative, to be used in combination with the traditional measure eta squared (also in ANOVA). To facilitate implementation, we analyze toy datasets with R and jamovi. This tutorial gives researchers a good foundation for LME analyses of simple 2 × 2 designs and paves the way for tackling more complicated designs.
本教程为简单设计的线性混合效应(LME)分析提供指导方针,目标受众是熟悉t检验、方差分析(ANOVA)和线性回归的研究人员。首先,当参与者是随机变异的唯一来源时,我们将LME分析与传统方法进行比较。我们表明,只要每个参与者在每个条件下有多个观察值,LME分析就更具优势。第二部分讨论了将参与者和刺激都用作随机变异来源的研究,以确保在测试的特定刺激之外进行稳健的泛化。在我们寻找标准化效应大小时,我们发现部分η平方对于LME的信息量甚至比对ANOVA的更少。我们提出 作为一种替代方法,与传统测量指标η平方(在ANOVA中也是如此)结合使用。为便于实施,我们使用R和jamovi分析了玩具数据集。本教程为研究人员对简单的2×2设计进行LME分析奠定了良好基础,并为处理更复杂的设计铺平了道路。