估计应用发表偏倚调整方法后荟萃分析效应量估计值的变化。
Estimating the change in meta-analytic effect size estimates after the application of publication bias adjustment methods.
机构信息
School of Psychology, University of Sussex.
出版信息
Psychol Methods. 2023 Jun;28(3):664-686. doi: 10.1037/met0000470. Epub 2022 Apr 21.
Publication bias poses a challenge for accurately synthesizing research findings using meta-analysis. A number of statistical methods have been developed to combat this problem by adjusting the meta-analytic estimates. Previous studies tended to apply these methods without regard to optimal conditions for each method's performance. The present study sought to estimate the typical effect size attenuation of these methods when they are applied to real meta-analytic data sets that match the conditions under which each method is known to remain relatively unbiased (such as sample size, level of heterogeneity, population effect size, and the level of publication bias). Four-hundred and 33 data sets from 90 articles published in psychology journals were reanalyzed using a selection of publication bias adjustment methods. The downward adjustment found in our sample was minimal, with greatest identified attenuation of = -.032, 95% highest posterior density interval (HPD) ranging from -.055 to -.009, for the precision effect test (PET). Some methods tended to adjust upward, and this was especially true for data sets with a sample size smaller than 10. We propose that researchers should seek to explore the full range of plausible estimates for the effects they are studying and note that these methods may not be able to combat bias in small samples (with less than 10 primary studies). We argue that although the effect size attenuation we found tended to be minimal, this should not be taken as an indication of low levels of publication bias in psychology. We discuss the findings with reference to new developments in Bayesian methods for publication bias adjustment, and the recent methodological reforms in psychology. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
发表偏倚给使用荟萃分析准确综合研究结果带来了挑战。已经开发了许多统计方法来通过调整荟萃分析估计值来解决这个问题。以前的研究倾向于应用这些方法,而不考虑每种方法性能的最佳条件。本研究旨在估计当这些方法应用于与每种方法保持相对无偏(例如样本量、异质性水平、总体效应大小和发表偏倚水平)的条件相匹配的真实荟萃分析数据集时,这些方法的典型效应大小衰减。使用选择的发表偏倚调整方法重新分析了 90 篇心理学期刊发表的 90 篇文章中的 433 个数据集。我们样本中发现的向下调整幅度很小,最大识别衰减为 = -.032,95%最高后验密度区间(HPD)范围为 -.055 至 -.009,对于精度效应检验(PET)。一些方法倾向于向上调整,特别是对于样本量小于 10 的数据集。我们建议研究人员应该努力探索他们正在研究的效应的所有可能的估计范围,并注意到这些方法可能无法纠正小样本(少于 10 项主要研究)中的偏差。我们认为,尽管我们发现的效应大小衰减往往很小,但这不应被视为心理学中发表偏倚水平低的迹象。我们根据贝叶斯发表偏倚调整方法的新发展以及心理学最近的方法学改革来讨论这些发现。(PsycInfo 数据库记录(c)2023 APA,保留所有权利)。