Suppr超能文献

通过各向异性变力引导克服机器人与人类交接中的认知与现实差距。

Overcoming the cognition-reality gap in robot-to-human handovers with anisotropic variable force guidance.

作者信息

Qin Chaolong, Song Aiguo, Li Huijun, Zhu Lifeng, Zhang Xiaorui, Wang Jianzhi

机构信息

The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211816, China.

出版信息

Comput Struct Biotechnol J. 2024 Mar 5;24:185-195. doi: 10.1016/j.csbj.2024.02.020. eCollection 2024 Dec.

Abstract

Object handover is a fundamental task for collaborative robots, particularly service robots. In in-home assistance scenarios, individuals often face constraints due to their posture and declining physical functions, necessitating high demands on robots for flexible real-time control and intuitive interactions. During robot-to-human handovers, individuals are limited to making perceptual judgements based on the appearance of the object and the consistent behaviour of the robot. This hinders their comprehensive perception and may lead to unexpected dangerous behaviour. Various handover trajectories pose challenges to predictive robot control and motion coordination. Many studies have shown that force guidance can provide adequate information to the receivers. However, force modulation with intention judgements based on velocity, acceleration, or jerk may impede the intended motion and require additional effort. In this paper, starting from a human-to-human handover study, an anisotropic variable force-guided robot-to-human handover control method is proposed to overcome the cognition-reality gap. The retraction motion was decoupled based on a fitted motion plane and a task-related linear trajectory, which served as a reference for overshoot suppression and impedance force modulation. The experimental results and user surveys show that the anisotropic variable impedance force suppresses overshooting without impeding the intended motions, giving the receiver sufficient time for behavioural adjustments and assisting them in completing a safe and efficient handover in a preferred manner.

摘要

物体交接是协作机器人尤其是服务机器人的一项基本任务。在家庭辅助场景中,由于个人的姿势和身体机能下降,他们常常面临限制,这就对机器人的灵活实时控制和直观交互提出了很高的要求。在机器人与人的交接过程中,个人只能基于物体的外观和机器人的一致行为做出感知判断。这阻碍了他们的全面感知,并可能导致意外的危险行为。各种交接轨迹给机器人的预测控制和运动协调带来了挑战。许多研究表明,力引导可以为接收者提供足够的信息。然而,基于速度、加速度或加加速度进行意图判断的力调制可能会阻碍预期的运动,并且需要额外的努力。在本文中,从人与人的交接研究出发,提出了一种各向异性变力引导的机器人与人交接控制方法,以克服认知与现实的差距。基于拟合运动平面和与任务相关的线性轨迹对缩回运动进行解耦,这为过冲抑制和阻抗力调制提供了参考。实验结果和用户调查表明,各向异性变阻抗力在不阻碍预期运动的情况下抑制了过冲,给接收者足够的时间进行行为调整,并帮助他们以一种优选的方式完成安全高效的交接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85ad/11724765/33e2898eea65/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验