Suppr超能文献

优化人机交接:自适应运输方法的影响。

Optimizing human-robot handovers: the impact of adaptive transport methods.

作者信息

Käppler Marco, Mamaev Ilshat, Alagi Hosam, Stein Thorsten, Deml Barbara

机构信息

Institute of Human and Industrial Engineering (ifab), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Intelligent Process Automation and Robotics Lab (IAR-IPR), Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

出版信息

Front Robot AI. 2023 Jul 13;10:1155143. doi: 10.3389/frobt.2023.1155143. eCollection 2023.

Abstract

Humans are increasingly coming into direct physical contact with robots in the context of object handovers. The technical development of robots is progressing so that handovers can be better adapted to humans. An important criterion for successful handovers between robots and humans is the predictability of the robot for the human. The better humans can anticipate the robot's actions, the better they can adapt to them and thus achieve smoother handovers. In the context of this work, it was investigated whether a highly adaptive transport method of the object, adapted to the human hand, leads to better handovers than a non-adaptive transport method with a predefined target position. To ensure robust handovers at high repetition rates, a Franka Panda robotic arm with a gripper equipped with an Intel RealSense camera and capacitive proximity sensors in the gripper was used. To investigate the handover behavior, a study was conducted with = 40 subjects, each performing 40 handovers in four consecutive runs. The dependent variables examined are physical handover time, early handover intervention before the robot reaches its target position, and subjects' subjective ratings. The adaptive transport method does not result in significantly higher mean physical handover times than the non-adaptive transport method. The non-adaptive transport method does not lead to a significantly earlier handover intervention in the course of the runs than the adaptive transport method. Trust in the robot and the perception of safety are rated significantly lower for the adaptive transport method than for the non-adaptive transport method. The physical handover time decreases significantly for both transport methods within the first two runs. For both transport methods, the percentage of handovers with a physical handover time between 0.1 and 0.2 s increases sharply, while the percentage of handovers with a physical handover time of >0.5 s decreases sharply. The results can be explained by theories of motor learning. From the experience of this study, an increased understanding of motor learning and adaptation in the context of human-robot interaction can be of great benefit for further technical development in robotics and for the industrial use of robots.

摘要

在物体交接的情境中,人类与机器人的直接身体接触越来越多。机器人技术不断发展,使得交接能够更好地适应人类。机器人与人类之间成功交接的一个重要标准是机器人对于人类的可预测性。人类越能预测机器人的动作,就越能更好地适应这些动作,从而实现更顺畅的交接。在这项工作中,研究了一种高度适应人类手部的物体运输方法是否比具有预定义目标位置的非适应性运输方法能带来更好的交接效果。为确保在高重复率下实现稳健的交接,使用了配备有英特尔实感摄像头和夹爪内电容式接近传感器的Franka Panda机器人手臂。为研究交接行为,对40名受试者进行了一项研究,每位受试者在连续四次试验中各进行40次交接。所考察的因变量包括实际交接时间、机器人到达目标位置之前的提前交接干预以及受试者的主观评分。适应性运输方法的平均实际交接时间并不比非适应性运输方法显著更高。在各次试验过程中,非适应性运输方法导致的交接干预并不比适应性运输方法显著更早。与非适应性运输方法相比,适应性运输方法中对机器人的信任和安全感评分显著更低。在最初两次试验中,两种运输方法的实际交接时间均显著减少。对于两种运输方法,实际交接时间在0.1至0.2秒之间的交接百分比急剧增加,而实际交接时间大于0.5秒的交接百分比急剧下降。这些结果可以用运动学习理论来解释。从这项研究的经验来看,在人机交互背景下对运动学习和适应的深入理解对于机器人技术的进一步发展以及机器人的工业应用可能会有很大帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc5/10373869/282f0a679e51/frobt-10-1155143-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验