Suppr超能文献

双能计算机断层扫描上的头颈部自动多器官分割

Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography.

作者信息

Lê Anh Thu, Sambourg Killian, Sun Roger, Deny Nicolas, Cifliku Vjona, Rouhi Rahimeh, Deutsch Eric, Fournier-Bidoz Nathalie, Robert Charlotte

机构信息

Université Paris-Saclay, Gustave Roussy, Inserm, Molecular Radiotherapy and Therapeutic Innovation, U1030, 94800 Villejuif, France.

Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France.

出版信息

Phys Imaging Radiat Oncol. 2024 Sep 30;32:100654. doi: 10.1016/j.phro.2024.100654. eCollection 2024 Oct.

Abstract

BACKGROUND AND PURPOSE

Deep-learning-based automatic segmentation is widely used in radiation oncology to delineate organs-at-risk. Dual-energy CT (DECT) allows the reconstruction of enhanced contrast images that could help with manual and auto-delineation. This paper presents a performance evaluation of a commercial auto-segmentation software on image series generated by a DECT.

MATERIAL AND METHODS

Different types of DECT images from seventy four head-and-neck (HN) patients were retrieved, including polyenergetic images at different voltages [80 kV reconstructed with a kernel corresponding to the commercial algorithm DirectDensity™ (PEI80-DD), 80 kV (PEI80), 120 kV-mixed (PEI120)] and a virtual-monoenergetic image at 40 keV (VMI40). Delineations used for treatment planning were considered as ground truth (GT) and were compared with the auto-segmentations performed on the 4 DECT images. A blinded qualitative evaluation of 3 structures (thyroid, left parotid, left nodes level II) was carried out. Performance metrics were calculated for thirteen HN structures to evaluate the auto-contours including dice similarity coefficient (DSC), 95th percentile Hausdorff distance (95HD) and mean surface distance (MSD).

RESULTS

We observed a high rate of low scores for PEI80-DD and VMI40 auto-segmentations on the thyroid and for GT and VMI40 contours on the nodes level II. All images received excellent scores for the parotid glands. The metrics comparison between GT and auto-segmented contours revealed that PEI80-DD had the highest DSC scores, significantly outperforming other reconstructed images for all organs (p < 0.05).

CONCLUSIONS

The results indicate that the auto-contouring system cannot generalize to images derived from DECT acquisition. It is therefore crucial to identify which organs benefit from these acquisitions to adapt the training datasets accordingly.

摘要

背景与目的

基于深度学习的自动分割在放射肿瘤学中被广泛用于勾画危及器官。双能CT(DECT)能够重建增强对比图像,有助于手动和自动勾画。本文对一款商业自动分割软件在DECT生成的图像序列上的性能进行评估。

材料与方法

检索了74例头颈部(HN)患者的不同类型DECT图像,包括不同电压下的多能图像[80 kV,使用与商业算法DirectDensity™对应的内核重建(PEI80-DD)、80 kV(PEI80)、120 kV混合(PEI120)]以及40 keV的虚拟单能图像(VMI40)。将用于治疗计划的勾画视为金标准(GT),并与在这4种DECT图像上进行的自动分割进行比较。对3个结构(甲状腺、左侧腮腺、左侧II级淋巴结)进行了盲法定性评估。计算了13个HN结构的性能指标,以评估自动轮廓,包括骰子相似系数(DSC)、第95百分位数豪斯多夫距离(95HD)和平均表面距离(MSD)。

结果

我们观察到,PEI80-DD和VMI40在甲状腺上的自动分割以及GT和VMI40在II级淋巴结轮廓上的得分较低。所有图像在腮腺方面均获得优异分数。GT与自动分割轮廓之间的指标比较显示,PEI80-DD的DSC得分最高,在所有器官上显著优于其他重建图像(p < 0.05)。

结论

结果表明,自动轮廓系统不能推广到DECT采集的图像。因此,识别哪些器官能从这些采集中受益并相应地调整训练数据集至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a7/11718415/74cee6ca9852/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验