Suppr超能文献

深度学习算法在勾画头颈部危及器官中的性能:系统评价和单臂荟萃分析。

Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis.

机构信息

General Hospital of Northern Theater Command, Department of Radiation Oncology, Shenyang, China.

Beifang Hospital of China Medical University, Shenyang, China.

出版信息

Biomed Eng Online. 2023 Nov 1;22(1):104. doi: 10.1186/s12938-023-01159-y.

Abstract

PURPOSE

The contouring of organs at risk (OARs) in head and neck cancer radiation treatment planning is a crucial, yet repetitive and time-consuming process. Recent studies have applied deep learning (DL) algorithms to automatically contour head and neck OARs. This study aims to conduct a systematic review and meta-analysis to summarize and analyze the performance of DL algorithms in contouring head and neck OARs. The objective is to assess the advantages and limitations of DL algorithms in contour planning of head and neck OARs.

METHODS

This study conducted a literature search of Pubmed, Embase and Cochrane Library databases, to include studies related to DL contouring head and neck OARs, and the dice similarity coefficient (DSC) of four categories of OARs from the results of each study are selected as effect sizes for meta-analysis. Furthermore, this study conducted a subgroup analysis of OARs characterized by image modality and image type.

RESULTS

149 articles were retrieved, and 22 studies were included in the meta-analysis after excluding duplicate literature, primary screening, and re-screening. The combined effect sizes of DSC for brainstem, spinal cord, mandible, left eye, right eye, left optic nerve, right optic nerve, optic chiasm, left parotid, right parotid, left submandibular, and right submandibular are 0.87, 0.83, 0.92, 0.90, 0.90, 0.71, 0.74, 0.62, 0.85, 0.85, 0.82, and 0.82, respectively. For subgroup analysis, the combined effect sizes for segmentation of the brainstem, mandible, left optic nerve, and left parotid gland using CT and MRI images are 0.86/0.92, 0.92/0.90, 0.71/0.73, and 0.84/0.87, respectively. Pooled effect sizes using 2D and 3D images of the brainstem, mandible, left optic nerve, and left parotid gland for contouring are 0.88/0.87, 0.92/0.92, 0.75/0.71 and 0.87/0.85.

CONCLUSIONS

The use of automated contouring technology based on DL algorithms is an essential tool for contouring head and neck OARs, achieving high accuracy, reducing the workload of clinical radiation oncologists, and providing individualized, standardized, and refined treatment plans for implementing "precision radiotherapy". Improving DL performance requires the construction of high-quality data sets and enhancing algorithm optimization and innovation.

摘要

目的

在头颈部癌症放射治疗计划中勾画危及器官(OARs)是一个关键但重复且耗时的过程。最近的研究已经应用深度学习(DL)算法来自动勾画头颈部 OARs。本研究旨在进行系统综述和荟萃分析,以总结和分析 DL 算法在勾画头颈部 OARs 中的性能。目的是评估 DL 算法在勾画头颈部 OAR 轮廓规划中的优势和局限性。

方法

本研究对 Pubmed、Embase 和 Cochrane Library 数据库进行了文献检索,纳入了与 DL 勾画头颈部 OAR 相关的研究,并从每项研究的结果中选择四个 OAR 类别的 Dice 相似系数(DSC)作为荟萃分析的效应量。此外,本研究还对头颈部 OAR 的图像模态和图像类型进行了亚组分析。

结果

共检索到 149 篇文献,排除重复文献、初步筛选和重新筛选后,22 项研究纳入荟萃分析。脑干、脊髓、下颌骨、左眼、右眼、左视神经、右视神经、视交叉、左腮腺、右腮腺、左下颌下腺、右下颌下腺的 DSC 合并效应量分别为 0.87、0.83、0.92、0.90、0.90、0.71、0.74、0.62、0.85、0.85、0.82、0.82。对于亚组分析,使用 CT 和 MRI 图像对脑干、下颌骨、左视神经和左腮腺进行分割的合并效应量分别为 0.86/0.92、0.92/0.90、0.71/0.73 和 0.84/0.87。使用 2D 和 3D 图像勾画脑干、下颌骨、左视神经和左腮腺的合并效应量分别为 0.88/0.87、0.92/0.92、0.75/0.71 和 0.87/0.85。

结论

基于 DL 算法的自动勾画技术是勾画头颈部 OAR 的重要工具,可实现高精度,减少临床放射肿瘤学家的工作量,并为实施“精准放疗”提供个体化、标准化和精细化的治疗计划。提高 DL 性能需要构建高质量数据集,并增强算法优化和创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dc/10621161/5992c2bc7e27/12938_2023_1159_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验