Wang Yubo, Zhu Haoran, Wang Yansong, Yang Yuning, Huang Yujian, Zhang Jian, Wong Ka-Chun, Li Xiangtao
School of Artificial Intelligence, Jilin University, Changchun 130012, China.
Information Science and Technology, Northeast Normal University, Changchun 130024, China.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btaf018.
Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.
EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RBPs. The platform supports 70 deep learning algorithms, covering feature representation, selection, model training, comparison, optimization, and evaluation, all integrated within an automated pipeline. EnrichRBP is adept at providing comprehensive visualizations, enhancing model interpretability, and facilitating the discovery of functionally significant sequence regions crucial for RBP interactions. In addition, EnrichRBP supports base-level functional annotation tasks, offering explanations and graphical visualizations that confirm the reliability of the predicted RNA-binding sites. Leveraging high-performance computing, EnrichRBP provides ultra-fast predictions ranging from seconds to hours, applicable to both pre-trained and custom model scenarios, thus proving its utility in real-world applications. Case studies highlight that EnrichRBP provides robust and interpretable predictions, demonstrating the power of deep learning in the functional analysis of RBP interactions. Finally, EnrichRBP aims to enhance the reproducibility of computational method analyses for RBP sequences, as well as reduce the programming and hardware requirements for biologists, thereby offering meaningful functional insights.
EnrichRBP is available at https://airbp.aibio-lab.com/. The source code is available at https://github.com/wangyb97/EnrichRBP, and detailed online documentation can be found at https://enrichrbp.readthedocs.io/en/latest/.
预测RNA结合蛋白(RBPs)是理解转录后调控机制的核心。在此,我们介绍EnrichRBP,这是一个专门为全面分析RBP与RNA的相互作用而设计的自动化且可解释的计算平台。
EnrichRBP是一项网络服务,使研究人员能够开发原创的深度学习和机器学习架构,以探索RBPs的复杂动态。该平台支持70种深度学习算法,涵盖特征表示、选择、模型训练、比较、优化和评估,所有这些都集成在一个自动化流程中。EnrichRBP擅长提供全面的可视化,增强模型的可解释性,并有助于发现对RBP相互作用至关重要的功能上有意义的序列区域。此外,EnrichRBP支持碱基水平的功能注释任务,提供解释和图形可视化,以确认预测的RNA结合位点的可靠性。利用高性能计算,EnrichRBP提供从几秒到几小时的超快速预测,适用于预训练和自定义模型场景,从而证明其在实际应用中的效用。案例研究表明,EnrichRBP提供了可靠且可解释的预测,展示了深度学习在RBP相互作用功能分析中的力量。最后,EnrichRBP旨在提高RBP序列计算方法分析的可重复性,并降低生物学家的编程和硬件要求,从而提供有意义的功能见解。