Zhang Kaili, Huang Bowen, Divigalpitiya Prasanna
Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan.
Zigong Academy of Urban Planning and Design, Zigong, Sichuan Province, China.
JMIR Public Health Surveill. 2025 Jan 13;11:e64564. doi: 10.2196/64564.
The effects of physical activity (PA) across different domains and intensities on depressive symptoms remain inconclusive. Incorporating the community-built environment (CBE) into longitudinal analyses of PA's impact on depressive symptoms is crucial.
This study aims to examine the effects of PA at different intensities-low-intensity PA (eg, walking activities) and moderate-to-vigorous-intensity PA (eg, activities requiring substantial effort and causing faster breathing or shortness of breath)-across leisure-time and occupational domains on depressive symptom trajectories among middle-aged and older adults. Additionally, it investigated how CBEs influence depressive symptoms and PA trajectories.
This longitudinal study included 6865 middle-aged and older adults from the China Health and Retirement Longitudinal Survey. A CBE variable system was developed using a community questionnaire to assess attributes of the physical built environment. Depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale. Latent growth curve modeling was applied to analyze 3 waves of the cohort data (2015, 2018, and 2020) to explore the differential effects of PA on depressive symptoms and the role of the CBE.
In the 2015 and 2018 waves, higher low-intensity leisure-time physical activity (LTPA) was associated with lower depressive symptoms (β=-.025, P=.01 and β=-.027, P=.005, respectively). Across all waves, moderate-to-vigorous-intensity LTPA showed no significant predictive effects (P=.21 in 2015, P=.57 in 2018, and P=.85 in 2020, respectively). However, higher occupational physical activity (OPA), particularly at moderate-to-vigorous intensities, was consistently associated with higher depressive symptoms. Parallel process latent growth curve modeling revealed that the initial level of total LTPA negatively predicted the initial level of depressive symptoms (β=-.076, P=.01). OPA exhibited dual effects, positively predicting the initial level of depressive symptoms (β=.108, P<.001) but negatively predicting their upward trajectory (β=-.136, P=.009). Among CBE variables, better infrastructure conditions (β=-.082, P<.001) and greater accessibility to public facilities (β=-.036, P=.045) negatively predicted the initial level of depressive symptoms. However, greater accessibility to public facilities positively predicted the upward trajectory of depressive symptoms (β=.083, P=.04). Better infrastructure conditions (β=.100, P=.002) and greater accessibility to public transport (β=.060, P=.01) positively predicted the initial level of total LTPA. Meanwhile, better infrastructure conditions (β=-.281, P<.001) and greater accessibility to public facilities (β=-.073, P<.001) negatively predicted the initial level of total OPA. Better infrastructure conditions positively predicted the declining trajectory of total OPA (β=.100, P=.004).
This study underscores the importance of considering the differential effects of PA across domains and intensities on depressive symptoms in public policies and guidelines. Given the influence of the environment on PA and depressive symptoms, targeted community measures should be implemented.
不同领域和强度的体育活动(PA)对抑郁症状的影响尚无定论。将社区建成环境(CBE)纳入PA对抑郁症状影响的纵向分析至关重要。
本研究旨在探讨不同强度的PA——低强度PA(如步行活动)和中等到高强度PA(如需要大量努力并导致呼吸加快或气短的活动)——在休闲时间和职业领域对中老年成年人抑郁症状轨迹的影响。此外,研究还调查了CBE如何影响抑郁症状和PA轨迹。
这项纵向研究纳入了来自中国健康与养老追踪调查的6865名中老年成年人。使用社区问卷开发了一个CBE变量系统,以评估物理建成环境的属性。使用流行病学研究中心抑郁量表测量抑郁症状。应用潜在增长曲线模型分析该队列3个时间点的数据(2015年、2018年和2020年),以探讨PA对抑郁症状的差异影响以及CBE的作用。
在2015年和2018年的数据中,较高的低强度休闲时间体育活动(LTPA)与较低的抑郁症状相关(β分别为−0.025,P = 0.01;β为−0.027,P = 0.005)。在所有时间点,中等到高强度的LTPA均未显示出显著的预测作用(2015年P = 0.21,2018年P = 0.57,2020年P = 0.85)。然而,较高的职业体育活动(OPA),尤其是中等到高强度的OPA,始终与较高的抑郁症状相关。平行过程潜在增长曲线模型显示,总LTPA的初始水平对抑郁症状的初始水平有负向预测作用(β = −0.076,P = 0.01)。OPA表现出双重作用,正向预测抑郁症状的初始水平(β = 0.108,P < 0.001),但负向预测其上升轨迹(β = −0.136,P = 0.009)。在CBE变量中,更好的基础设施条件(β = −0.082,P < 0.001)和更高的公共设施可达性(β = −0.036,P = 0.045)对抑郁症状的初始水平有负向预测作用。然而,更高的公共设施可达性对抑郁症状的上升轨迹有正向预测作用(β = 0.083,P = 0.04)。更好的基础设施条件(β = 0.100,P = 0.002)和更高的公共交通可达性(β = 0.060,P = 0.01)对总LTPA的初始水平有正向预测作用。同时,更好的基础设施条件(β = −0.281,P < 0.001)和更高的公共设施可达性(β = −0.073,P < 0.001)对总OPA的初始水平有负向预测作用。更好的基础设施条件对总OPA的下降轨迹有正向预测作用(β = 0.100,P = 0.004)。
本研究强调了在公共政策和指南中考虑PA在不同领域和强度对抑郁症状的差异影响的重要性。鉴于环境对PA和抑郁症状的影响,应实施有针对性的社区措施。