Mesquita Sara, Perfeito Lília, Paolotti Daniela, Gonçalves-Sá Joana
Social Physics and Complexity (SPAC) Lab, LIP-Laboratory for Instrumentation and Experimental Particle Physics, Lisboa, Portugal.
Nova Medical School, Lisboa, Portugal.
PLOS Digit Health. 2025 Jan 13;4(1):e0000670. doi: 10.1371/journal.pdig.0000670. eCollection 2025 Jan.
Epidemiology and Public Health have increasingly relied on structured and unstructured data, collected inside and outside of typical health systems, to study, identify, and mitigate diseases at the population level. Focusing on infectious diseases, we review the state of Digital Epidemiology at the beginning of 2020 and how it changed after the COVID-19 pandemic, in both nature and breadth. We argue that Epidemiology's progressive use of data generated outside of clinical and public health systems creates several technical challenges, particularly in carrying specific biases that are almost impossible to correct for a priori. Using a statistical perspective, we discuss how a definition of Digital Epidemiology that emphasizes "data-type" instead of "data-source," may be more operationally useful, by clarifying key methodological differences and gaps. Therefore, we briefly describe some of the possible biases arising from varied collection methods and sources, and offer some recommendations to better explore the potential of Digital Epidemiology, particularly on how to help reduce inequity.
流行病学和公共卫生越来越依赖于在典型卫生系统内外收集的结构化和非结构化数据,以便在人群层面研究、识别和减轻疾病。以传染病为重点,我们回顾了2020年初数字流行病学的状况,以及在新冠疫情之后它在性质和广度上是如何变化的。我们认为,流行病学对临床和公共卫生系统之外产生的数据的逐步使用带来了若干技术挑战,尤其是存在一些几乎无法事先纠正的特定偏差。从统计学角度出发,我们讨论了强调“数据类型”而非“数据源”的数字流行病学定义如何通过阐明关键的方法差异和差距而在操作上更有用。因此,我们简要描述了各种收集方法和来源可能产生的一些偏差,并提出了一些建议,以更好地挖掘数字流行病学的潜力,特别是关于如何帮助减少不公平现象。