Suppr超能文献

数字药物警戒与疾病监测:结合传统与大数据系统以促进公众健康

Digital Pharmacovigilance and Disease Surveillance: Combining Traditional and Big-Data Systems for Better Public Health.

作者信息

Salathé Marcel

机构信息

Digital Epidemiology Laboratory, School of Life Sciences and School of Computer and Communication Sciences, EPFL, Geneva, Switzerland.

出版信息

J Infect Dis. 2016 Dec 1;214(suppl_4):S399-S403. doi: 10.1093/infdis/jiw281.

Abstract

The digital revolution has contributed to very large data sets (ie, big data) relevant for public health. The two major data sources are electronic health records from traditional health systems and patient-generated data. As the two data sources have complementary strengths-high veracity in the data from traditional sources and high velocity and variety in patient-generated data-they can be combined to build more-robust public health systems. However, they also have unique challenges. Patient-generated data in particular are often completely unstructured and highly context dependent, posing essentially a machine-learning challenge. Some recent examples from infectious disease surveillance and adverse drug event monitoring demonstrate that the technical challenges can be solved. Despite these advances, the problem of verification remains, and unless traditional and digital epidemiologic approaches are combined, these data sources will be constrained by their intrinsic limits.

摘要

数字革命催生了与公共卫生相关的超大型数据集(即大数据)。两大主要数据来源是传统卫生系统的电子健康记录以及患者生成的数据。由于这两种数据来源具有互补优势——传统来源的数据准确性高,患者生成的数据速度快且种类多——它们可以结合起来构建更强大的公共卫生系统。然而,它们也面临着独特的挑战。尤其是患者生成的数据通常完全无结构化且高度依赖上下文,这本质上构成了一项机器学习挑战。传染病监测和药物不良事件监测方面的一些最新实例表明,技术挑战是可以解决的。尽管有这些进展,但验证问题依然存在,而且除非将传统和数字流行病学方法结合起来,否则这些数据来源将受到其固有局限性的制约。

相似文献

3
Big Data for Infectious Disease Surveillance and Modeling.
J Infect Dis. 2016 Dec 1;214(suppl_4):S375-S379. doi: 10.1093/infdis/jiw400.
4
Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems.
J Infect Dis. 2016 Dec 1;214(suppl_4):S380-S385. doi: 10.1093/infdis/jiw376.
5
Mind the Scales: Harnessing Spatial Big Data for Infectious Disease Surveillance and Inference.
J Infect Dis. 2016 Dec 1;214(suppl_4):S409-S413. doi: 10.1093/infdis/jiw344.
6
Exploiting heterogeneous publicly available data sources for drug safety surveillance: computational framework and case studies.
Expert Opin Drug Saf. 2017 Feb;16(2):113-124. doi: 10.1080/14740338.2017.1257604. Epub 2016 Dec 1.
7
Meta-analysis and other approaches for synthesizing structured and unstructured data in plant pathology.
Annu Rev Phytopathol. 2014;52:453-76. doi: 10.1146/annurev-phyto-102313-050214. Epub 2014 Jun 18.
8
Predictive modeling of structured electronic health records for adverse drug event detection.
BMC Med Inform Decis Mak. 2015;15 Suppl 4(Suppl 4):S1. doi: 10.1186/1472-6947-15-S4-S1. Epub 2015 Nov 25.
10
A Platform for Monitoring Regional Antimicrobial Resistance, Using Online Data Sources: ResistanceOpen.
J Infect Dis. 2016 Dec 1;214(suppl_4):S393-S398. doi: 10.1093/infdis/jiw343.

引用本文的文献

1
Pharmacovigilance - Technological Advancements, Recent Developments and Innovations.
Curr Drug Saf. 2025;20(4):423-449. doi: 10.2174/0115748863356840250112181406.
2
Infodemiology and Infoveillance of the Four Most Widespread Arbovirus Diseases in Italy.
Epidemiologia (Basel). 2024 Jul 5;5(3):340-352. doi: 10.3390/epidemiologia5030024.
4
Real-World Data and Evidence in Lung Cancer: A Review of Recent Developments.
Cancers (Basel). 2024 Apr 4;16(7):1414. doi: 10.3390/cancers16071414.
5
Assessing the utility of COVID-19 case reports as a leading indicator for hospitalization forecasting in the United States.
Epidemics. 2023 Dec;45:100728. doi: 10.1016/j.epidem.2023.100728. Epub 2023 Nov 7.
7
Big data in contemporary electron microscopy: challenges and opportunities in data transfer, compute and management.
Histochem Cell Biol. 2023 Sep;160(3):169-192. doi: 10.1007/s00418-023-02191-8. Epub 2023 Apr 13.
8
Participatory Surveillance for COVID-19 Trend Detection in Brazil: Cross-sectional Study.
JMIR Public Health Surveill. 2023 Apr 26;9:e44517. doi: 10.2196/44517.
10
The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature.
Pharmaceut Med. 2022 Oct;36(5):295-306. doi: 10.1007/s40290-022-00441-z. Epub 2022 Jul 29.

本文引用的文献

1
Identifying Adverse Effects of HIV Drug Treatment and Associated Sentiments Using Twitter.
JMIR Public Health Surveill. 2015 Jul 27;1(2):e7. doi: 10.2196/publichealth.4488. eCollection 2015 Jul-Dec.
2
Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance.
PLoS Comput Biol. 2015 Oct 29;11(10):e1004513. doi: 10.1371/journal.pcbi.1004513. eCollection 2015 Oct.
4
Ethical challenges of big data in public health.
PLoS Comput Biol. 2015 Feb 9;11(2):e1003904. doi: 10.1371/journal.pcbi.1003904. eCollection 2015 Feb.
5
Global disease monitoring and forecasting with Wikipedia.
PLoS Comput Biol. 2014 Nov 13;10(11):e1003892. doi: 10.1371/journal.pcbi.1003892. eCollection 2014 Nov.
6
Digital drug safety surveillance: monitoring pharmaceutical products in twitter.
Drug Saf. 2014 May;37(5):343-50. doi: 10.1007/s40264-014-0155-x.
7
Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time.
PLoS Comput Biol. 2014 Apr 17;10(4):e1003581. doi: 10.1371/journal.pcbi.1003581. eCollection 2014 Apr.
8
Toward enhanced pharmacovigilance using patient-generated data on the internet.
Clin Pharmacol Ther. 2014 Aug;96(2):239-46. doi: 10.1038/clpt.2014.77. Epub 2014 Apr 8.
9
Big data. The parable of Google Flu: traps in big data analysis.
Science. 2014 Mar 14;343(6176):1203-5. doi: 10.1126/science.1248506.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验